
Perl version 5.26.1 documentation - sort

Page 1http://perldoc.perl.org

NAME
sort - perl pragma to control sort() behaviour

SYNOPSIS
 use sort 'stable';		 # guarantee stability
 use sort '_quicksort';	 # use a quicksort algorithm
 use sort '_mergesort';	 # use a mergesort algorithm
 use sort 'defaults';	 # revert to default behavior
 no sort 'stable';		 # stability not important

 use sort '_qsort';		 # alias for quicksort

 my $current;
 BEGIN {
	 $current = sort::current();	 # identify prevailing algorithm
 }

DESCRIPTION
With the sort pragma you can control the behaviour of the builtin sort() function.

In Perl versions 5.6 and earlier the quicksort algorithm was used to
 implement sort(), but in Perl 5.8
a mergesort algorithm was also made
 available, mainly to guarantee worst case O(N log N)
behaviour:
 the worst case of quicksort is O(N**2). In Perl 5.8 and later,
 quicksort defends against
quadratic behaviour by shuffling large
 arrays before sorting.

A stable sort means that for records that compare equal, the original
 input ordering is preserved.
Mergesort is stable, quicksort is not.
 Stability will matter only if elements that compare equal can be

distinguished in some other way. That means that simple numerical
 and lexical sorts do not profit from
stability, since equal elements
 are indistinguishable. However, with a comparison such as

 { substr($a, 0, 3) cmp substr($b, 0, 3) }

stability might matter because elements that compare equal on the
 first 3 characters may be
distinguished based on subsequent characters.
 In Perl 5.8 and later, quicksort can be stabilized, but
doing so will
 add overhead, so it should only be done if it matters.

The best algorithm depends on many things. On average, mergesort
 does fewer comparisons than
quicksort, so it may be better when
 complicated comparison routines are used. Mergesort also takes

advantage of pre-existing order, so it would be favored for using sort() to merge several sorted
arrays. On the other hand, quicksort
 is often faster for small arrays, and on arrays of a few distinct

values, repeated many times. You can force the
 choice of algorithm with this pragma, but this feels
heavy-handed,
 so the subpragmas beginning with a _ may not persist beyond Perl 5.8.
 The default
algorithm is mergesort, which will be stable even if
 you do not explicitly demand it.
 But the stability of
the default sort is a side-effect that could
 change in later versions. If stability is important, be sure to

say so with a

 use sort 'stable';

The no sort pragma doesn't forbid what follows, it just leaves the choice open. Thus, after

 no sort qw(_mergesort stable);

a mergesort, which happens to be stable, will be employed anyway.
 Note that

 no sort "_quicksort";
 no sort "_mergesort";

Perl version 5.26.1 documentation - sort

Page 2http://perldoc.perl.org

have exactly the same effect, leaving the choice of sort algorithm open.

CAVEATS
As of Perl 5.10, this pragma is lexically scoped and takes effect
 at compile time. In earlier versions its
effect was global and took
 effect at run-time; the documentation suggested using eval() to
 change
the behaviour:

 { eval 'use sort qw(defaults _quicksort)'; # force quicksort
 eval 'no sort "stable"'; # stability not wanted
 print sort::current . "\n";
 @a = sort @b;
 eval 'use sort "defaults"'; # clean up, for others
 }
 { eval 'use sort qw(defaults stable)'; # force stability
 print sort::current . "\n";
 @c = sort @d;
 eval 'use sort "defaults"'; # clean up, for others
 }

Such code no longer has the desired effect, for two reasons.
 Firstly, the use of eval() means that
the sorting algorithm
 is not changed until runtime, by which time it's too late to
 have any effect.
Secondly, sort::current is also called at
 run-time, when in fact the compile-time value of
sort::current
 is the one that matters.

So now this code would be written:

 { use sort qw(defaults _quicksort); # force quicksort
 no sort "stable"; # stability not wanted
 my $current;
 BEGIN { $current = sort::current; }
 print "$current\n";
 @a = sort @b;
 # Pragmas go out of scope at the end of the block
 }
 { use sort qw(defaults stable); # force stability
 my $current;
 BEGIN { $current = sort::current; }
 print "$current\n";
 @c = sort @d;
 }

