
Perl version 5.26.1 documentation - perltrap

Page 1http://perldoc.perl.org

NAME
perltrap - Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the -w
 switch; see warnings and perlrun.
The second biggest trap is not
 making your entire program runnable under use strict. The third
biggest
 trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

A Perl program executes only once, not once for each input line. You can
 do an implicit loop
with -n or -p.

The English module, loaded via

 use English;

allows you to refer to special variables (like $/) with names (like
 $RS), as though they were in
awk; see perlvar for details.

Semicolons are required after all simple statements in Perl (except
 at the end of a block).
Newline is not a statement delimiter.

Curly brackets are required on ifs and whiles.

Variables begin with "$", "@" or "%" in Perl.

Arrays index from 0. Likewise string positions in substr() and
 index().

You have to decide whether your array has numeric or string indices.

Hash values do not spring into existence upon mere reference.

You have to decide whether you want to use string or numeric
 comparisons.

Reading an input line does not split it for you. You get to split it
 to an array yourself. And the
split() operator has different
 arguments than awk's.

The current input line is normally in $_, not $0. It generally does
 not have the newline stripped.
($0 is the name of the program
 executed.) See perlvar.

$<digit> does not refer to fields--it refers to substrings matched
 by the last match pattern.

The print() statement does not add field and record separators unless
 you set $, and $\. You
can set $OFS and $ORS if you're using
 the English module.

You must open your files before you print to them.

The range operator is "..", not comma. The comma operator works as in
 C.

The match operator is "=~", not "~". ("~" is the one's complement
 operator, as in C.)

The exponentiation operator is "**", not "^". "^" is the XOR
 operator, as in C. (You know, one
could get the feeling that awk is
 basically incompatible with C.)

The concatenation operator is ".", not the null string. (Using the
 null string would render /pat/
 /pat/ unparsable, because the third slash
 would be interpreted as a division operator--the
tokenizer is in fact
 slightly context sensitive for operators like "/", "?", and ">".
 And in fact, "."
itself can be the beginning of a number.)

The next, exit, and continue keywords work differently.

Perl version 5.26.1 documentation - perltrap

Page 2http://perldoc.perl.org

The following variables work differently:

 Awk	 Perl
 ARGC	 scalar @ARGV (compare with $#ARGV)
 ARGV[0]	 $0
 FILENAME	 $ARGV
 FNR	 $. - something
 FS	 (whatever you like)
 NF	 $#Fld, or some such
 NR	 $.
 OFMT	 $#
 OFS	 $,
 ORS	 $\
 RLENGTH	 length($&)
 RS	 $/
 RSTART	 length($`)
 SUBSEP	 $;

You cannot set $RS to a pattern, only a string.

When in doubt, run the awk construct through a2p and see what it
 gives you.

C/C++ Traps
Cerebral C and C++ programmers should take note of the following:

Curly brackets are required on if's and while's.

You must use elsif rather than else if.

The break and continue keywords from C become in Perl last
 and next, respectively.
Unlike in C, these do not work within a do { } while construct. See "Loop Control" in
perlsyn.

The switch statement is called given/when and only available in
 perl 5.10 or newer. See
"Switch Statements" in perlsyn.

Variables begin with "$", "@" or "%" in Perl.

Comments begin with "#", not "/*" or "//". Perl may interpret C/C++
 comments as division
operators, unterminated regular expressions or
 the defined-or operator.

You can't take the address of anything, although a similar operator
 in Perl is the backslash,
which creates a reference.

ARGV must be capitalized. $ARGV[0] is C's argv[1], and argv[0]
 ends up in $0.

System calls such as link(), unlink(), rename(), etc. return nonzero for
 success, not 0.
(system(), however, returns zero for success.)

Signal handlers deal with signal names, not numbers. Use kill -l
 to find their names on
your system.

JavaScript Traps
Judicious JavaScript programmers should take note of the following:

In Perl, binary + is always addition. $string1 + $string2 converts
 both strings to
numbers and then adds them. To concatenate two strings,
 use the . operator.

The + unary operator doesn't do anything in Perl. It exists to avoid
 syntactic ambiguities.

Unlike for...in, Perl's for (also spelled foreach) does not allow
 the left-hand side to be

Perl version 5.26.1 documentation - perltrap

Page 3http://perldoc.perl.org

an arbitrary expression. It must be a variable:

 for my $variable (keys %hash) {
	 ...
 }

Furthermore, don't forget the keys in there, as foreach my $kv (%hash) {} iterates over
the keys and values, and is
 generally not useful ($kv would be a key, then a value, and so on).

To iterate over the indices of an array, use foreach my $i (0 .. $#array)
 {}.
foreach my $v (@array) {} iterates over the values.

Perl requires braces following if, while, foreach, etc.

In Perl, else if is spelled elsif.

? : has higher precedence than assignment. In JavaScript, one can
 write:

 condition ? do_something() : variable = 3

and the variable is only assigned if the condition is false. In Perl, you
 need parentheses:

 $condition ? do_something() : ($variable = 3);

Or just use if.

Perl requires semicolons to separate statements.

Variables declared with my only affect code after the declaration.
 You cannot write $x = 1;
my $x; and expect the first assignment to
 affect the same variable. It will instead assign to an
$x declared
 previously in an outer scope, or to a global variable.

Note also that the variable is not visible until the following statement. This means that in my
$x = 1 + $x the second $x refers
 to one declared previously.

my variables are scoped to the current block, not to the current
 function. If you write {my
$x;} $x;, the second $x does not refer to
 the one declared inside the block.

An object's members cannot be made accessible as variables. The closest
 Perl equivalent to
with(object) { method() } is for, which can alias $_ to the object:

 for ($object) {
	 $_->method;
 }

The object or class on which a method is called is passed as one of the
 method's arguments,
not as a separate this value.

Sed Traps
Seasoned sed programmers should take note of the following:

A Perl program executes only once, not once for each input line. You can
 do an implicit loop
with -n or -p.

Backreferences in substitutions use "$" rather than "\".

The pattern matching metacharacters "(", ")", and "|" do not have backslashes
 in front.

The range operator is ..., rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

Perl version 5.26.1 documentation - perltrap

Page 4http://perldoc.perl.org

The backtick operator does variable interpolation without regard to
 the presence of single
quotes in the command.

The backtick operator does no translation of the return value, unlike csh.

Shells (especially csh) do several levels of substitution on each
 command line. Perl does
substitution in only certain constructs
 such as double quotes, backticks, angle brackets, and
search patterns.

Shells interpret scripts a little bit at a time. Perl compiles the
 entire program before executing it
(except for BEGIN blocks, which
 execute at compile time).

The arguments are available via @ARGV, not $1, $2, etc.

The environment is not automatically made available as separate scalar
 variables.

The shell's test uses "=", "!=", "<" etc for string comparisons and "-eq",
 "-ne", "-lt" etc for
numeric comparisons. This is the reverse of Perl, which
 uses eq, ne, lt for string
comparisons, and ==, != < etc
 for numeric comparisons.

Perl Traps
Practicing Perl Programmers should take note of the following:

Remember that many operations behave differently in a list
 context than they do in a scalar
one. See perldata for details.

Avoid barewords if you can, especially all lowercase ones.
 You can't tell by just looking at it
whether a bareword is
 a function or a string. By using quotes on strings and
 parentheses on
function calls, you won't ever get them confused.

You cannot discern from mere inspection which builtins
 are unary operators (like chop() and
chdir())
 and which are list operators (like print() and unlink()).
 (Unless prototyped, user-defined
subroutines can only be list
 operators, never unary ones.) See perlop and perlsub.

People have a hard time remembering that some functions
 default to $_, or @ARGV, or
whatever, but that others which
 you might expect to do not.

The <FH> construct is not the name of the filehandle, it is a readline
 operation on that handle.
The data read is assigned to $_ only if the
 file read is the sole condition in a while loop:

 while (<FH>) { }
 while (defined($_ = <FH>)) { }..
 <FH>; # data discarded!

Remember not to use = when you need =~;
 these two constructs are quite different:

 $x = /foo/;
 $x =~ /foo/;

The do {} construct isn't a real loop that you can use
 loop control on.

Use my() for local variables whenever you can get away with
 it (but see perlform for where
you can't).
 Using local() actually gives a local value to a global
 variable, which leaves you
open to unforeseen side-effects
 of dynamic scoping.

If you localize an exported variable in a module, its exported value will
 not change. The local
name becomes an alias to a new value but the
 external name is still an alias for the original.

As always, if any of these are ever officially declared as bugs,
 they'll be fixed and removed.

