
Perl version 5.26.1 documentation - perlpod

Page 1http://perldoc.perl.org

NAME
perlpod - the Plain Old Documentation format

DESCRIPTION
Pod is a simple-to-use markup language used for writing documentation
 for Perl, Perl programs, and
Perl modules.

Translators are available for converting Pod to various formats
 like plain text, HTML, man pages, and
more.

Pod markup consists of three basic kinds of paragraphs: ordinary, verbatim, and command.

Ordinary Paragraph
Most paragraphs in your documentation will be ordinary blocks
 of text, like this one. You can simply
type in your text without
 any markup whatsoever, and with just a blank line before and
 after. When it
gets formatted, it will undergo minimal formatting, like being rewrapped, probably put into a
proportionally spaced
 font, and maybe even justified.

You can use formatting codes in ordinary paragraphs, for bold, italic, code-style, hyperlinks, and
more. Such
 codes are explained in the "Formatting Codes"
 section, below.

Verbatim Paragraph
Verbatim paragraphs are usually used for presenting a codeblock or
 other text which does not require
any special parsing or formatting,
 and which shouldn't be wrapped.

A verbatim paragraph is distinguished by having its first character
 be a space or a tab. (And
commonly, all its lines begin with spaces
 and/or tabs.) It should be reproduced exactly, with tabs
assumed to
 be on 8-column boundaries. There are no special formatting codes,
 so you can't italicize
or anything like that. A \ means \, and
 nothing else.

Command Paragraph
A command paragraph is used for special treatment of whole chunks
 of text, usually as headings or
parts of lists.

All command paragraphs (which are typically only one line long) start
 with "=", followed by an
identifier, followed by arbitrary text that
 the command can use however it pleases. Currently
recognized commands
 are

 =pod
 =head1 Heading Text
 =head2 Heading Text
 =head3 Heading Text
 =head4 Heading Text
 =over indentlevel
 =item stuff
 =back
 =begin format
 =end format
 =for format text...
 =encoding type
 =cut

To explain them each in detail:

=head1 Heading Text

=head2 Heading Text

=head3 Heading Text

Perl version 5.26.1 documentation - perlpod

Page 2http://perldoc.perl.org

=head4 Heading Text

Head1 through head4 produce headings, head1 being the highest
 level. The text in the rest of
this paragraph is the content of the
 heading. For example:

 =head2 Object Attributes

The text "Object Attributes" comprises the heading there.
 The text in these heading
commands can use formatting codes, as seen here:

 =head2 Possible Values for C<$/>

Such commands are explained in the
 "Formatting Codes" section, below.

=over indentlevel

=item stuff...

=back

Item, over, and back require a little more explanation: "=over" starts
 a region specifically for
the generation of a list using "=item"
 commands, or for indenting (groups of) normal
paragraphs. At the end
 of your list, use "=back" to end it. The indentlevel option to
 "=over"
indicates how far over to indent, generally in ems (where
 one em is the width of an "M" in the
document's base font) or roughly
 comparable units; if there is no indentlevel option, it defaults

to four. (And some formatters may just ignore whatever indentlevel
 you provide.) In the stuff in
=item stuff..., you may
 use formatting codes, as seen here:

 =item Using C<$|> to Control Buffering

Such commands are explained in the
 "Formatting Codes" section, below.

Note also that there are some basic rules to using "=over" ...
 "=back" regions:

Don't use "=item"s outside of an "=over" ... "=back" region.

The first thing after the "=over" command should be an "=item", unless
 there aren't
going to be any items at all in this "=over" ... "=back"
 region.

Don't put "=headn" commands inside an "=over" ... "=back" region.

And perhaps most importantly, keep the items consistent: either use
 "=item *" for all of
them, to produce bullets; or use "=item 1.",
 "=item 2.", etc., to produce numbered lists;
or use "=item foo",
 "=item bar", etc.--namely, things that look nothing like bullets or

numbers.

If you start with bullets or numbers, stick with them, as
 formatters use the first "=item"
type to decide how to format the
 list.

=cut

To end a Pod block, use a blank line,
 then a line beginning with "=cut", and a blank
 line after it.
This lets Perl (and the Pod formatter) know that
 this is where Perl code is resuming. (The
blank line before the "=cut"
 is not technically necessary, but many older Pod processors
require it.)

=pod

The "=pod" command by itself doesn't do much of anything, but it
 signals to Perl (and Pod
formatters) that a Pod block starts here. A
 Pod block starts with any command paragraph, so
a "=pod" command is
 usually used just when you want to start a Pod block with an ordinary

paragraph or a verbatim paragraph. For example:

 =item stuff()

 This function does stuff.

Perl version 5.26.1 documentation - perlpod

Page 3http://perldoc.perl.org

 =cut

 sub stuff {
 ...
 }

 =pod

 Remember to check its return value, as in:

 stuff() || die "Couldn't do stuff!";

 =cut

=begin formatname

=end formatname

=for formatname text...

For, begin, and end will let you have regions of text/code/data that
 are not generally
interpreted as normal Pod text, but are passed
 directly to particular formatters, or are
otherwise special. A
 formatter that can use that format will use the region, otherwise it
 will be
completely ignored.

A command "=begin formatname", some paragraphs, and a
 command "=end formatname",
mean that the text/data in between
 is meant for formatters that understand the special format

called formatname. For example,

 =begin html

 <hr>
 <p> This is a raw HTML paragraph </p>

 =end html

The command "=for formatname text..."
 specifies that the remainder of just this paragraph
(starting
 right after formatname) is in that special format.

 =for html <hr>
 <p> This is a raw HTML paragraph </p>

This means the same thing as the above "=begin html" ... "=end html"
 region.

That is, with "=for", you can have only one paragraph's worth
 of text (i.e., the text in "=foo
targetname text..."), but with
 "=begin targetname" ... "=end targetname", you can have any
amount
 of stuff in between. (Note that there still must be a blank line
 after the "=begin"
command and a blank line before the "=end"
 command.)

Here are some examples of how to use these:

 =begin html

Figure 1.

 =end html

 =begin text

 | foo |
 | bar |

Perl version 5.26.1 documentation - perlpod

Page 4http://perldoc.perl.org

 ^^^^ Figure 1. ^^^^

 =end text

Some format names that formatters currently are known to accept
 include "roff", "man",
"latex", "tex", "text", and "html". (Some
 formatters will treat some of these as synonyms.)

A format name of "comment" is common for just making notes (presumably
 to yourself) that
won't appear in any formatted version of the Pod
 document:

 =for comment
 Make sure that all the available options are documented!

Some formatnames will require a leading colon (as in "=for :formatname", or "=begin
:formatname" ... "=end :formatname"),
 to signal that the text is not raw data, but
instead is Pod text
 (i.e., possibly containing formatting codes) that's just not for
 normal
formatting (e.g., may not be a normal-use paragraph, but might
 be for formatting as a
footnote).

=encoding encodingname

This command is used for declaring the encoding of a document. Most
 users won't need this;
but if your encoding isn't US-ASCII,
 then put a =encoding encodingname command very
early in the document so
 that pod formatters will know how to decode the document. For
encodingname, use a name recognized by the Encode::Supported
 module. Some pod
formatters may try to guess between a Latin-1 or
 CP-1252 versus
 UTF-8 encoding, but they
may guess wrong. It's best to be explicit if
 you use anything besides strict ASCII. Examples:

 =encoding latin1

 =encoding utf8

 =encoding koi8-r

 =encoding ShiftJIS

 =encoding big5

=encoding affects the whole document, and must occur only once.

And don't forget, all commands but =encoding last up
 until the end of its paragraph, not its line. So
in the
 examples below, you can see that every command needs the blank
 line after it, to end its
paragraph. (And some older Pod translators
 may require the =encoding line to have a following
blank line as
 well, even though it should be legal to omit.)

Some examples of lists include:

 =over

 =item *

 First item

 =item *

 Second item

Perl version 5.26.1 documentation - perlpod

Page 5http://perldoc.perl.org

 =back

 =over

 =item Foo()

 Description of Foo function

 =item Bar()

 Description of Bar function

 =back

Formatting Codes
In ordinary paragraphs and in some command paragraphs, various
 formatting codes (a.k.a. "interior
sequences") can be used:

I<text> -- italic text

Used for emphasis ("be I<careful!>") and parameters
 ("redo I<LABEL>")

B<text> -- bold text

Used for switches ("perl's B<-n> switch"), programs
 ("some systems provide a B<
chfn> for that"),
 emphasis ("be B<careful!>"), and so on
 ("and that feature is
 known as B<autovivification>").

C<code> -- code text

Renders code in a typewriter font, or gives some other indication that
 this represents program
text ("C<gmtime($^T)>") or some other
 form of computerese ("C<drwxr-xr-x>").

L<name> -- a hyperlink

There are various syntaxes, listed below. In the syntaxes given, text, name, and section
cannot contain the characters
 '/' and '|'; and any '<' or '>' should be matched.

L<name>

Link to a Perl manual page (e.g., L<Net::Ping>). Note
 that name should not contain
spaces. This syntax
 is also occasionally used for references to Unix man pages, as in
L<crontab(5)>.

L<name/"sec"> or L<name/sec>

Link to a section in other manual page. E.g., L<perlsyn/"For Loops">

L</"sec"> or L</sec>

Link to a section in this manual page. E.g., L</"Object Methods">

A section is started by the named heading or item. For
 example, L<perlvar/$.> or L<
perlvar/"$."> both
 link to the section started by "=item $." in perlvar. And L<
perlsyn/For Loops> or L<perlsyn/"For Loops">
 both link to the section started by "
=head2 For Loops"
 in perlsyn.

To control what text is used for display, you
 use "L<text|...>", as in:

L<text|name>

Link this text to that manual page. E.g., L<Perl Error Messages|perldiag>

Perl version 5.26.1 documentation - perlpod

Page 6http://perldoc.perl.org

L<text|name/"sec"> or L<text|name/sec>

Link this text to that section in that manual page. E.g., L<postfix
"if"|perlsyn/"Statement Modifiers">

L<text|/"sec"> or L<text|/sec>
 or L<text|"sec">

Link this text to that section in this manual page. E.g., L<the various
attributes|/"Member Data">

Or you can link to a web page:

L<scheme:...>

L<text|scheme:...>

Links to an absolute URL. For example, L<http://www.perl.org/> or L<The
Perl Home Page|http://www.perl.org/>.

E<escape> -- a character escape

Very similar to HTML/XML &foo; "entity references":

E<lt> -- a literal < (less than)

E<gt> -- a literal > (greater than)

E<verbar> -- a literal | (vertical bar)

E<sol> -- a literal / (solidus)

The above four are optional except in other formatting codes,
 notably L<...>, and
when preceded by a
 capital letter.

E<htmlname>

Some non-numeric HTML entity name, such as E<eacute>,
 meaning the same thing
as é in HTML -- i.e., a lowercase
 e with an acute (/-shaped) accent.

E<number>

The ASCII/Latin-1/Unicode character with that number. A
 leading "0x" means that
number is hex, as in E<0x201E>. A leading "0" means that number is octal,
 as in E<
075>. Otherwise number is interpreted as being
 in decimal, as in E<181>.

Note that older Pod formatters might not recognize octal or
 hex numeric escapes, and
that many formatters cannot reliably
 render characters above 255. (Some formatters
may even have
 to use compromised renderings of Latin-1/CP-1252 characters, like

rendering E<eacute> as just a plain "e".)

F<filename> -- used for filenames

Typically displayed in italics. Example: "F<.cshrc>"

S<text> -- text contains non-breaking spaces

This means that the words in text should not be broken
 across lines. Example: S<$x ? $y :
 $z>.

X<topic name> -- an index entry

This is ignored by most formatters, but some may use it for building
 indexes. It always renders
as empty-string.
 Example: X<absolutizing relative URLs>

Z<> -- a null (zero-effect) formatting code

This is rarely used. It's one way to get around using an
 E<...> code sometimes. For example,
instead of
 "NE<lt>3" (for "N<3") you could write
 "NZ<><3" (the "Z<>" breaks up the "N" and

the "<" so they can't be considered
 the part of a (fictitious) "N<...>" code).

Perl version 5.26.1 documentation - perlpod

Page 7http://perldoc.perl.org

Most of the time, you will need only a single set of angle brackets to
 delimit the beginning and end of
formatting codes. However,
 sometimes you will want to put a real right angle bracket (a
 greater-than
sign, '>') inside of a formatting code. This is particularly
 common when using a formatting code to
provide a different font-type for a
 snippet of code. As with all things in Perl, there is more than
 one
way to do it. One way is to simply escape the closing bracket
 using an E code:

 C<$a E<lt>=E<gt> $b>

This will produce: "$a <=> $b"

A more readable, and perhaps more "plain" way is to use an alternate
 set of delimiters that doesn't
require a single ">" to be escaped.
 Doubled angle brackets ("<<" and ">>") may be used if and only if
there is
 whitespace right after the opening delimiter and whitespace right
 before the closing delimiter!
For example, the following will
 do the trick:

 C<< $a <=> $b >>

In fact, you can use as many repeated angle-brackets as you like so
 long as you have the same
number of them in the opening and closing
 delimiters, and make sure that whitespace immediately
follows the last
 '<' of the opening delimiter, and immediately precedes the first '>'
 of the closing
delimiter. (The whitespace is ignored.) So the
 following will also work:

 C<<< $a <=> $b >>>
 C<<<< $a <=> $b >>>>

And they all mean exactly the same as this:

 C<$a E<lt>=E<gt> $b>

The multiple-bracket form does not affect the interpretation of the contents of
 the formatting code,
only how it must end. That means that the examples above
 are also exactly the same as this:

 C<< $a E<lt>=E<gt> $b >>

As a further example, this means that if you wanted to put these bits of
 code in C (code) style:

 open(X, ">>thing.dat") || die $!
 $foo->bar();

you could do it like so:

 C<<< open(X, ">>thing.dat") || die $! >>>
 C<< $foo->bar(); >>

which is presumably easier to read than the old way:

 C<open(X, "E<gt>E<gt>thing.dat") || die $!>
 C<$foo-E<gt>bar();>

This is currently supported by pod2text (Pod::Text), pod2man (Pod::Man),
 and any other pod2xxx or
Pod::Xxxx translators that use
 Pod::Parser 1.093 or later, or Pod::Tree 1.02 or later.

The Intent
The intent is simplicity of use, not power of expression. Paragraphs
 look like paragraphs (block
format), so that they stand out
 visually, and so that I could run them through fmt easily to reformat

them (that's F7 in my version of vi, or Esc Q in my version of emacs). I wanted the translator to

Perl version 5.26.1 documentation - perlpod

Page 8http://perldoc.perl.org

always leave the ' and ` and " quotes alone, in verbatim mode, so I could slurp in a
 working
program, shift it over four spaces, and have it print out, er,
 verbatim. And presumably in a monospace
font.

The Pod format is not necessarily sufficient for writing a book. Pod
 is just meant to be an idiot-proof
common source for nroff, HTML,
 TeX, and other markup languages, as used for online

documentation. Translators exist for pod2text, pod2html, pod2man (that's for nroff(1) and troff(1)),
pod2latex, and pod2fm. Various others are available in CPAN.

Embedding Pods in Perl Modules
You can embed Pod documentation in your Perl modules and scripts. Start
 your documentation with
an empty line, a "=head1" command at the
 beginning, and end it with a "=cut" command and an
empty line. The perl executable will ignore the Pod text. You can place a Pod
 statement where perl
expects the beginning of a new statement, but
 not within a statement, as that would result in an error.
See any of
 the supplied library modules for examples.

If you're going to put your Pod at the end of the file, and you're using
 an __END__ or __DATA__ cut
mark, make sure to put an empty line there
 before the first Pod command.

 __END__

 =head1 NAME

 Time::Local - efficiently compute time from local and GMT time

Without that empty line before the "=head1", many translators wouldn't
 have recognized the "=head1"
as starting a Pod block.

Hints for Writing Pod
The podchecker command is provided for checking Pod syntax for errors
 and warnings. For
example, it checks for completely blank lines in
 Pod blocks and for unknown commands and
formatting codes. You should
 still also pass your document through one or more translators
and proofread
 the result, or print out the result and proofread that. Some of the
 problems
found may be bugs in the translators, which you may or may not
 wish to work around.

If you're more familiar with writing in HTML than with writing in Pod, you
 can try your hand at
writing documentation in simple HTML, and converting
 it to Pod with the experimental
Pod::HTML2Pod module,
 (available in CPAN), and looking at the resulting code. The
experimental Pod::PXML module in CPAN might also be useful.

Many older Pod translators require the lines before every Pod
 command and after every Pod
command (including "=cut"!) to be a blank
 line. Having something like this:

 # - - - - - - - - - - - -
 =item $firecracker->boom()

 This noisily detonates the firecracker object.
 =cut
 sub boom {
 ...

...will make such Pod translators completely fail to see the Pod block
 at all.

Instead, have it like this:

 # - - - - - - - - - - - -

 =item $firecracker->boom()

Perl version 5.26.1 documentation - perlpod

Page 9http://perldoc.perl.org

 This noisily detonates the firecracker object.

 =cut

 sub boom {
 ...

Some older Pod translators require paragraphs (including command
 paragraphs like "=head2
Functions") to be separated by completely
 empty lines. If you have an apparently empty line
with some spaces
 on it, this might not count as a separator for those translators, and
 that
could cause odd formatting.

Older translators might add wording around an L<> link, so that L<Foo::Bar> may become
"the Foo::Bar manpage", for example.
 So you shouldn't write things like the L<foo>

documentation, if you want the translated document to read sensibly.
 Instead, write the L
<Foo::Bar|Foo::Bar> documentation or L<the Foo::Bar
documentation|Foo::Bar>, to control how the
 link comes out.

Going past the 70th column in a verbatim block might be ungracefully
 wrapped by some
formatters.

SEE ALSO
perlpodspec, "PODs: Embedded Documentation" in perlsyn, perlnewmod, perldoc, pod2html,
pod2man, podchecker.

AUTHOR
Larry Wall, Sean M. Burke

