
Perl version 5.26.1 documentation - perlinterp

Page 1http://perldoc.perl.org

NAME
perlinterp - An overview of the Perl interpreter

DESCRIPTION
This document provides an overview of how the Perl interpreter works at
 the level of C code, along
with pointers to the relevant C source code
 files.

ELEMENTS OF THE INTERPRETER
The work of the interpreter has two main stages: compiling the code
 into the internal representation,
or bytecode, and then executing it. "Compiled code" in perlguts explains exactly how the compilation
stage
 happens.

Here is a short breakdown of perl's operation:

Startup
The action begins in perlmain.c. (or miniperlmain.c for miniperl)
 This is very high-level code, enough
to fit on a single screen, and it
 resembles the code found in perlembed; most of the real action takes

place in perl.c

perlmain.c is generated by ExtUtils::Miniperl from miniperlmain.c at make time, so you should
make perl to follow this
 along.

First, perlmain.c allocates some memory and constructs a Perl
 interpreter, along these lines:

 1 PERL_SYS_INIT3(&argc,&argv,&env);
 2
 3 if (!PL_do_undump) {
 4 my_perl = perl_alloc();
 5 if (!my_perl)
 6 exit(1);
 7 perl_construct(my_perl);
 8 PL_perl_destruct_level = 0;
 9 }

Line 1 is a macro, and its definition is dependent on your operating
 system. Line 3 references
PL_do_undump, a global variable - all
 global variables in Perl start with PL_. This tells you whether
the
 current running program was created with the -u flag to perl and
 then undump, which means it's
going to be false in any sane context.

Line 4 calls a function in perl.c to allocate memory for a Perl
 interpreter. It's quite a simple function,
and the guts of it looks
 like this:

 my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));

Here you see an example of Perl's system abstraction, which we'll see
 later: PerlMem_malloc is
either your system's malloc, or Perl's
 own malloc as defined in malloc.c if you selected that option
at
 configure time.

Next, in line 7, we construct the interpreter using perl_construct,
 also in perl.c; this sets up all the
special variables that Perl
 needs, the stacks, and so on.

Now we pass Perl the command line options, and tell it to go:

 exitstatus = perl_parse(my_perl, xs_init, argc, argv, (char **)NULL);
 if (!exitstatus)
 perl_run(my_perl);

 exitstatus = perl_destruct(my_perl);

Perl version 5.26.1 documentation - perlinterp

Page 2http://perldoc.perl.org

 perl_free(my_perl);

perl_parse is actually a wrapper around S_parse_body, as defined
 in perl.c, which processes the
command line options, sets up any
 statically linked XS modules, opens the program and calls
yyparse to
 parse it.

Parsing
The aim of this stage is to take the Perl source, and turn it into an
 op tree. We'll see what one of those
looks like later. Strictly
 speaking, there's three things going on here.

yyparse, the parser, lives in perly.c, although you're better off
 reading the original YACC input in
perly.y. (Yes, Virginia, there is a YACC grammar for Perl!) The job of the parser is to take your
 code
and "understand" it, splitting it into sentences, deciding which
 operands go with which operators and
so on.

The parser is nobly assisted by the lexer, which chunks up your input
 into tokens, and decides what
type of thing each token is: a variable
 name, an operator, a bareword, a subroutine, a core function,
and so
 on. The main point of entry to the lexer is yylex, and that and its
 associated routines can be
found in toke.c. Perl isn't much like
 other computer languages; it's highly context sensitive at times, it

can be tricky to work out what sort of token something is, or where a
 token ends. As such, there's a
lot of interplay between the tokeniser
 and the parser, which can get pretty frightening if you're not
used to
 it.

As the parser understands a Perl program, it builds up a tree of
 operations for the interpreter to
perform during execution. The
 routines which construct and link together the various operations are
 to
be found in op.c, and will be examined later.

Optimization
Now the parsing stage is complete, and the finished tree represents the
 operations that the Perl
interpreter needs to perform to execute our
 program. Next, Perl does a dry run over the tree looking
for
 optimisations: constant expressions such as 3 + 4 will be computed
 now, and the optimizer will
also see if any multiple operations can be
 replaced with a single one. For instance, to fetch the
variable $foo, instead of grabbing the glob *foo and looking at the scalar
 component, the optimizer
fiddles the op tree to use a function which
 directly looks up the scalar in question. The main optimizer
is peep
 in op.c, and many ops have their own optimizing functions.

Running
Now we're finally ready to go: we have compiled Perl byte code, and all
 that's left to do is run it. The
actual execution is done by the runops_standard function in run.c; more specifically, it's done
 by
these three innocent looking lines:

 while ((PL_op = PL_op->op_ppaddr(aTHX))) {
 PERL_ASYNC_CHECK();
 }

You may be more comfortable with the Perl version of that:

 PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};

Well, maybe not. Anyway, each op contains a function pointer, which
 stipulates the function which will
actually carry out the operation.
 This function will return the next op in the sequence - this allows for

things like if which choose the next op dynamically at run time. The PERL_ASYNC_CHECK makes
sure that things like signals interrupt
 execution if required.

The actual functions called are known as PP code, and they're spread
 between four files: pp_hot.c
contains the "hot" code, which is most
 often used and highly optimized, pp_sys.c contains all the

system-specific functions, pp_ctl.c contains the functions which
 implement control structures (if,

Perl version 5.26.1 documentation - perlinterp

Page 3http://perldoc.perl.org

while and the like) and pp.c
 contains everything else. These are, if you like, the C code for Perl's

built-in functions and operators.

Note that each pp_ function is expected to return a pointer to the
 next op. Calls to perl subs (and eval
blocks) are handled within the
 same runops loop, and do not consume extra space on the C stack.
For
 example, pp_entersub and pp_entertry just push a CxSUB or CxEVAL block struct onto the
context stack which contain the address
 of the op following the sub call or eval. They then return the
first op
 of that sub or eval block, and so execution continues of that sub or
 block. Later, a
pp_leavesub or pp_leavetry op pops the CxSUB
 or CxEVAL, retrieves the return op from it, and
returns it.

Exception handing
Perl's exception handing (i.e. die etc.) is built on top of the
 low-level setjmp()/longjmp() C-library
functions. These basically
 provide a way to capture the current PC and SP registers and later
 restore
them; i.e. a longjmp() continues at the point in code where
 a previous setjmp() was done, with
anything further up on the C
 stack being lost. This is why code should always save values using
SAVE_FOO rather than in auto variables.

The perl core wraps setjmp() etc in the macros JMPENV_PUSH and JMPENV_JUMP. The basic rule
of perl exceptions is that exit, and die (in the absence of eval) perform a JMPENV_JUMP(2), while
die within eval does a JMPENV_JUMP(3).

At entry points to perl, such as perl_parse(), perl_run() and call_sv(cv, G_EVAL) each
does a JMPENV_PUSH, then enter a runops
 loop or whatever, and handle possible exception returns.
For a 2
 return, final cleanup is performed, such as popping stacks and calling CHECK or END blocks.
Amongst other things, this is how scope
 cleanup still occurs during an exit.

If a die can find a CxEVAL block on the context stack, then the
 stack is popped to that level and the
return op in that block is
 assigned to PL_restartop; then a JMPENV_JUMP(3) is performed.
 This
normally passes control back to the guard. In the case of perl_run and call_sv, a non-null
PL_restartop triggers
 re-entry to the runops loop. The is the normal way that die or croak is
handled within an eval.

Sometimes ops are executed within an inner runops loop, such as tie,
 sort or overload code. In this
case, something like

 sub FETCH { eval { die } }

would cause a longjmp right back to the guard in perl_run, popping
 both runops loops, which is
clearly incorrect. One way to avoid this is
 for the tie code to do a JMPENV_PUSH before executing
FETCH in
 the inner runops loop, but for efficiency reasons, perl in fact just
 sets a flag, using
CATCH_SET(TRUE). The pp_require, pp_entereval and pp_entertry ops check this flag, and
if true,
 they call docatch, which does a JMPENV_PUSH and starts a new
 runops level to execute the
code, rather than doing it on the current
 loop.

As a further optimisation, on exit from the eval block in the FETCH,
 execution of the code following the
block is still carried on in the
 inner loop. When an exception is raised, docatch compares the
JMPENV level of the CxEVAL with PL_top_env and if they differ,
 just re-throws the exception. In this
way any inner loops get popped.

Here's an example.

 1: eval { tie @a, 'A' };
 2: sub A::TIEARRAY {
 3: eval { die };
 4: die;
 5: }

Perl version 5.26.1 documentation - perlinterp

Page 4http://perldoc.perl.org

To run this code, perl_run is called, which does a JMPENV_PUSH
 then enters a runops loop. This
loop executes the eval and tie ops on
 line 1, with the eval pushing a CxEVAL onto the context stack.

The pp_tie does a CATCH_SET(TRUE), then starts a second runops
 loop to execute the body of
TIEARRAY. When it executes the entertry
 op on line 3, CATCH_GET is true, so pp_entertry calls
docatch
 which does a JMPENV_PUSH and starts a third runops loop, which then
 executes the die op.
At this point the C call stack looks like this:

 Perl_pp_die
 Perl_runops # third loop
 S_docatch_body
 S_docatch
 Perl_pp_entertry
 Perl_runops # second loop
 S_call_body
 Perl_call_sv
 Perl_pp_tie
 Perl_runops # first loop
 S_run_body
 perl_run
 main

and the context and data stacks, as shown by -Dstv, look like:

 STACK 0: MAIN
 CX 0: BLOCK =>
 CX 1: EVAL => AV() PV("A"\0)
 retop=leave
 STACK 1: MAGIC
 CX 0: SUB =>
 retop=(null)
 CX 1: EVAL => *
 retop=nextstate

The die pops the first CxEVAL off the context stack, sets PL_restartop from it, does a
JMPENV_JUMP(3), and control returns
 to the top docatch. This then starts another third-level
runops
 level, which executes the nextstate, pushmark and die ops on line 4. At
 the point that the
second pp_die is called, the C call stack looks
 exactly like that above, even though we are no longer
within an inner
 eval; this is because of the optimization mentioned earlier. However,
 the context stack
now looks like this, ie with the top CxEVAL popped:

 STACK 0: MAIN
 CX 0: BLOCK =>
 CX 1: EVAL => AV() PV("A"\0)
 retop=leave
 STACK 1: MAGIC
 CX 0: SUB =>
 retop=(null)

The die on line 4 pops the context stack back down to the CxEVAL,
 leaving it as:

 STACK 0: MAIN
 CX 0: BLOCK =>

As usual, PL_restartop is extracted from the CxEVAL, and a JMPENV_JUMP(3) done, which pops
the C stack back to the docatch:

Perl version 5.26.1 documentation - perlinterp

Page 5http://perldoc.perl.org

 S_docatch
 Perl_pp_entertry
 Perl_runops # second loop
 S_call_body
 Perl_call_sv
 Perl_pp_tie
 Perl_runops # first loop
 S_run_body
 perl_run
 main

In this case, because the JMPENV level recorded in the CxEVAL
 differs from the current one,
docatch just does a JMPENV_JUMP(3)
 and the C stack unwinds to:

 perl_run
 main

Because PL_restartop is non-null, run_body starts a new runops
 loop and execution continues.

INTERNAL VARIABLE TYPES
You should by now have had a look at perlguts, which tells you about
 Perl's internal variable types:
SVs, HVs, AVs and the rest. If not, do
 that now.

These variables are used not only to represent Perl-space variables,
 but also any constants in the
code, as well as some structures
 completely internal to Perl. The symbol table, for instance, is an

ordinary Perl hash. Your code is represented by an SV as it's read into
 the parser; any program files
you call are opened via ordinary Perl
 filehandles, and so on.

The core Devel::Peek module lets us examine SVs from a
 Perl program. Let's see, for instance, how
Perl treats the constant "hello".

 % perl -MDevel::Peek -e 'Dump("hello")'
 1 SV = PV(0xa041450) at 0xa04ecbc
 2 REFCNT = 1
 3 FLAGS = (POK,READONLY,pPOK)
 4 PV = 0xa0484e0 "hello"\0
 5 CUR = 5
 6 LEN = 6

Reading Devel::Peek output takes a bit of practise, so let's go
 through it line by line.

Line 1 tells us we're looking at an SV which lives at 0xa04ecbc in
 memory. SVs themselves are very
simple structures, but they contain a
 pointer to a more complex structure. In this case, it's a PV, a

structure which holds a string value, at location 0xa041450. Line 2
 is the reference count; there are
no other references to this data, so
 it's 1.

Line 3 are the flags for this SV - it's OK to use it as a PV, it's a
 read-only SV (because it's a constant)
and the data is a PV internally.
 Next we've got the contents of the string, starting at location
0xa0484e0.

Line 5 gives us the current length of the string - note that this does not include the null terminator.
Line 6 is not the length of the
 string, but the length of the currently allocated buffer; as the string

grows, Perl automatically extends the available storage via a routine
 called SvGROW.

You can get at any of these quantities from C very easily; just add Sv to the name of the field shown
in the snippet, and you've got a
 macro which will return the value: SvCUR(sv) returns the current

length of the string, SvREFCOUNT(sv) returns the reference count, SvPV(sv, len) returns the
string itself with its length, and so on.
 More macros to manipulate these properties can be found in

Perl version 5.26.1 documentation - perlinterp

Page 6http://perldoc.perl.org

perlguts.

Let's take an example of manipulating a PV, from sv_catpvn, in sv.c

 1 void
 2 Perl_sv_catpvn(pTHX_ SV *sv, const char *ptr, STRLEN len)
 3 {
 4 STRLEN tlen;
 5 char *junk;

 6 junk = SvPV_force(sv, tlen);
 7 SvGROW(sv, tlen + len + 1);
 8 if (ptr == junk)
 9 ptr = SvPVX(sv);
 10 Move(ptr,SvPVX(sv)+tlen,len,char);
 11 SvCUR(sv) += len;
 12 *SvEND(sv) = '\0';
 13 (void)SvPOK_only_UTF8(sv); /* validate pointer */
 14 SvTAINT(sv);
 15 }

This is a function which adds a string, ptr, of length len onto
 the end of the PV stored in sv. The
first thing we do in line 6 is
 make sure that the SV has a valid PV, by calling the SvPV_force
 macro
to force a PV. As a side effect, tlen gets set to the current
 value of the PV, and the PV itself is
returned to junk.

In line 7, we make sure that the SV will have enough room to
 accommodate the old string, the new
string and the null terminator. If LEN isn't big enough, SvGROW will reallocate space for us.

Now, if junk is the same as the string we're trying to add, we can
 grab the string directly from the SV;
SvPVX is the address of the PV
 in the SV.

Line 10 does the actual catenation: the Move macro moves a chunk of
 memory around: we move the
string ptr to the end of the PV - that's
 the start of the PV plus its current length. We're moving len
bytes
 of type char. After doing so, we need to tell Perl we've extended
 the string, by altering CUR to
reflect the new length. SvEND is a
 macro which gives us the end of the string, so that needs to be a
"\0".

Line 13 manipulates the flags; since we've changed the PV, any IV or NV
 values will no longer be
valid: if we have $a=10; $a.="6"; we don't
 want to use the old IV of 10. SvPOK_only_utf8 is a
special
 UTF-8-aware version of SvPOK_only, a macro which turns off the IOK
 and NOK flags and
turns on POK. The final SvTAINT is a macro which
 launders tainted data if taint mode is turned on.

AVs and HVs are more complicated, but SVs are by far the most common
 variable type being thrown
around. Having seen something of how we
 manipulate these, let's go on and look at how the op tree
is
 constructed.

OP TREES
First, what is the op tree, anyway? The op tree is the parsed
 representation of your program, as we
saw in our section on parsing,
 and it's the sequence of operations that Perl goes through to execute

your program, as we saw in Running.

An op is a fundamental operation that Perl can perform: all the
 built-in functions and operators are
ops, and there are a series of ops
 which deal with concepts the interpreter needs internally - entering

and leaving a block, ending a statement, fetching a variable, and so
 on.

The op tree is connected in two ways: you can imagine that there are
 two "routes" through it, two
orders in which you can traverse the tree.
 First, parse order reflects how the parser understood the

Perl version 5.26.1 documentation - perlinterp

Page 7http://perldoc.perl.org

code, and
 secondly, execution order tells perl what order to perform the
 operations in.

The easiest way to examine the op tree is to stop Perl after it has
 finished parsing, and get it to dump
out the tree. This is exactly what
 the compiler backends B::Terse, B::Concise
 and B::Debug do.

Let's have a look at how Perl sees $a = $b + $c:

 % perl -MO=Terse -e '$a=$b+$c'
 1 LISTOP (0x8179888) leave
 2 OP (0x81798b0) enter
 3 COP (0x8179850) nextstate
 4 BINOP (0x8179828) sassign
 5 BINOP (0x8179800) add [1]
 6 UNOP (0x81796e0) null [15]
 7 SVOP (0x80fafe0) gvsv GV (0x80fa4cc) *b
 8 UNOP (0x81797e0) null [15]
 9 SVOP (0x8179700) gvsv GV (0x80efeb0) *c
 10 UNOP (0x816b4f0) null [15]
 11 SVOP (0x816dcf0) gvsv GV (0x80fa460) *a

Let's start in the middle, at line 4. This is a BINOP, a binary
 operator, which is at location 0x8179828.
The specific operator in
 question is sassign - scalar assignment - and you can find the code
 which
implements it in the function pp_sassign in pp_hot.c. As a
 binary operator, it has two children: the
add operator, providing the
 result of $b+$c, is uppermost on line 5, and the left hand side is
 on line
10.

Line 10 is the null op: this does exactly nothing. What is that doing
 there? If you see the null op, it's a
sign that something has been
 optimized away after parsing. As we mentioned in Optimization, the

optimization stage sometimes converts two operations into one, for
 example when fetching a scalar
variable. When this happens, instead of
 rewriting the op tree and cleaning up the dangling pointers,
it's
 easier just to replace the redundant operation with the null op.
 Originally, the tree would have
looked like this:

 10 SVOP (0x816b4f0) rv2sv [15]
 11 SVOP (0x816dcf0) gv GV (0x80fa460) *a

That is, fetch the a entry from the main symbol table, and then look
 at the scalar component of it:
gvsv (pp_gvsv in pp_hot.c)
 happens to do both these things.

The right hand side, starting at line 5 is similar to what we've just
 seen: we have the add op (pp_add,
also in pp_hot.c) add
 together two gvsvs.

Now, what's this about?

 1 LISTOP (0x8179888) leave
 2 OP (0x81798b0) enter
 3 COP (0x8179850) nextstate

enter and leave are scoping ops, and their job is to perform any
 housekeeping every time you
enter and leave a block: lexical variables
 are tidied up, unreferenced variables are destroyed, and so
on. Every
 program will have those first three lines: leave is a list, and its
 children are all the
statements in the block. Statements are delimited
 by nextstate, so a block is a collection of
nextstate ops, with
 the ops to be performed for each statement being the children of nextstate.
enter is a single op which functions as a marker.

That's how Perl parsed the program, from top to bottom:

 Program

Perl version 5.26.1 documentation - perlinterp

Page 8http://perldoc.perl.org

 |
 Statement
 |
 =
 / \
 / \
 $a +
 / \
 $b $c

However, it's impossible to perform the operations in this order:
 you have to find the values of $b and
$c before you add them
 together, for instance. So, the other thread that runs through the op
 tree is
the execution order: each op has a field op_next which
 points to the next op to be run, so following
these pointers tells us
 how perl executes the code. We can traverse the tree in this order
 using the
exec option to B::Terse:

 % perl -MO=Terse,exec -e '$a=$b+$c'
 1 OP (0x8179928) enter
 2 COP (0x81798c8) nextstate
 3 SVOP (0x81796c8) gvsv GV (0x80fa4d4) *b
 4 SVOP (0x8179798) gvsv GV (0x80efeb0) *c
 5 BINOP (0x8179878) add [1]
 6 SVOP (0x816dd38) gvsv GV (0x80fa468) *a
 7 BINOP (0x81798a0) sassign
 8 LISTOP (0x8179900) leave

This probably makes more sense for a human: enter a block, start a
 statement. Get the values of $b
and $c, and add them together.
 Find $a, and assign one to the other. Then leave.

The way Perl builds up these op trees in the parsing process can be
 unravelled by examining toke.c,
the lexer, and perly.y, the YACC
 grammar. Let's look at the code that constructs the tree for $a = $b
 +
 $c.

First, we'll look at the Perl_yylex function in the lexer. We want to
 look for case 'x', where x is
the first character of the operator.
 (Incidentally, when looking for the code that handles a keyword,
you'll
 want to search for KEY_foo where "foo" is the keyword.) Here is the code
 that handles
assignment (there are quite a few operators beginning with =, so most of it is omitted for brevity):

 1 case '=':
 2 s++;
 ... code that handles == => etc. and pod ...
 3 pl_yylval.ival = 0;
 4 OPERATOR(ASSIGNOP);

We can see on line 4 that our token type is ASSIGNOP (OPERATOR is a
 macro, defined in toke.c, that
returns the token type, among other
 things). And +:

 1 case '+':
 2 {
 3 const char tmp = *s++;
 ... code for ++ ...
 4 if (PL_expect == XOPERATOR) {
 ...
 5 Aop(OP_ADD);
 6 }
 ...
 7 }

Perl version 5.26.1 documentation - perlinterp

Page 9http://perldoc.perl.org

Line 4 checks what type of token we are expecting. Aop returns a token.
 If you search for Aop
elsewhere in toke.c, you will see that it
 returns an ADDOP token.

Now that we know the two token types we want to look for in the parser,
 let's take the piece of perly.y
we need to construct the tree for $a = $b + $c

 1 term : term ASSIGNOP term
 2 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }
 3 | term ADDOP term
 4 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

If you're not used to reading BNF grammars, this is how it works:
 You're fed certain things by the
tokeniser, which generally end up in
 upper case. ADDOP and ASSIGNOP are examples of "terminal
symbols",
 because you can't get any simpler than
 them.

The grammar, lines one and three of the snippet above, tells you how to
 build up more complex
forms. These complex forms, "non-terminal
 symbols" are generally placed in lower case. term here is
a
 non-terminal symbol, representing a single expression.

The grammar gives you the following rule: you can make the thing on the
 left of the colon if you see
all the things on the right in sequence.
 This is called a "reduction", and the aim of parsing is to
completely
 reduce the input. There are several different ways you can perform a
 reduction, separated
by vertical bars: so, term followed by =
 followed by term makes a term, and term followed by +

followed by term can also make a term.

So, if you see two terms with an = or +, between them, you can
 turn them into a single expression.
When you do this, you execute the
 code in the block on the next line: if you see =, you'll do the code

in line 2. If you see +, you'll do the code in line 4. It's this
 code which contributes to the op tree.

 | term ADDOP term
 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

What this does is creates a new binary op, and feeds it a number of
 variables. The variables refer to
the tokens: $1 is the first token
 in the input, $2 the second, and so on - think regular expression

backreferences. $$ is the op returned from this reduction. So, we
 call newBINOP to create a new
binary operator. The first parameter
 to newBINOP, a function in op.c, is the op type. It's an addition

operator, so we want the type to be ADDOP. We could specify this
 directly, but it's right there as the
second token in the input, so we
 use $2. The second parameter is the op's flags: 0 means "nothing

special". Then the things to add: the left and right hand side of our
 expression, in scalar context.

The functions that create ops, which have names like newUNOP and newBINOP, call a "check"
function associated with each op type, before
 returning the op. The check functions can mangle the
op as they see fit,
 and even replace it with an entirely new one. These functions are defined
 in op.c,
and have a Perl_ck_ prefix. You can find out which
 check function is used for a particular op type by
looking in regen/opcodes. Take OP_ADD, for example. (OP_ADD is the token
 value from the
Aop(OP_ADD) in toke.c which the parser passes to newBINOP as its first argument.) Here is the
relevant line:

 add addition (+) ck_null IfsT2 S S

The check function in this case is Perl_ck_null, which does nothing.
 Let's look at a more
interesting case:

 readline <HANDLE> ck_readline t% F?

And here is the function from op.c:

 1 OP *

Perl version 5.26.1 documentation - perlinterp

Page 10http://perldoc.perl.org

 2 Perl_ck_readline(pTHX_ OP *o)
 3 {
 4 PERL_ARGS_ASSERT_CK_READLINE;
 5
 6 if (o->op_flags & OPf_KIDS) {
 7 OP *kid = cLISTOPo->op_first;
 8 if (kid->op_type == OP_RV2GV)
 9 kid->op_private |= OPpALLOW_FAKE;
 10 }
 11 else {
 12 OP * const newop
 13 = newUNOP(OP_READLINE, 0, newGVOP(OP_GV, 0,
 14 PL_argvgv));
 15 op_free(o);
 16 return newop;
 17 }
 18 return o;
 19 }

One particularly interesting aspect is that if the op has no kids (i.e., readline() or <>) the op is
freed and replaced with an entirely
 new one that references *ARGV (lines 12-16).

STACKS
When perl executes something like addop, how does it pass on its
 results to the next op? The answer
is, through the use of stacks. Perl
 has a number of stacks to store things it's currently working on, and
we'll look at the three most important ones here.

Argument stack
Arguments are passed to PP code and returned from PP code using the
 argument stack, ST. The
typical way to handle arguments is to pop
 them off the stack, deal with them how you wish, and then
push the
 result back onto the stack. This is how, for instance, the cosine
 operator works:

 NV value;
 value = POPn;
 value = Perl_cos(value);
 XPUSHn(value);

We'll see a more tricky example of this when we consider Perl's macros
 below. POPn gives you the
NV (floating point value) of the top SV on
 the stack: the $x in cos($x). Then we compute the cosine,
and
 push the result back as an NV. The X in XPUSHn means that the
 stack should be extended if
necessary - it can't be necessary here,
 because we know there's room for one more item on the
stack, since
 we've just removed one! The XPUSH* macros at least guarantee safety.

Alternatively, you can fiddle with the stack directly: SP gives you
 the first element in your portion of the
stack, and TOP* gives you
 the top SV/IV/NV/etc. on the stack. So, for instance, to do unary
 negation
of an integer:

 SETi(-TOPi);

Just set the integer value of the top stack entry to its negation.

Argument stack manipulation in the core is exactly the same as it is in
 XSUBs - see perlxstut, perlxs
and perlguts for a longer
 description of the macros used in stack manipulation.

Perl version 5.26.1 documentation - perlinterp

Page 11http://perldoc.perl.org

Mark stack
I say "your portion of the stack" above because PP code doesn't
 necessarily get the whole stack to
itself: if your function calls
 another function, you'll only want to expose the arguments aimed for
 the
called function, and not (necessarily) let it get at your own data.
 The way we do this is to have a
"virtual" bottom-of-stack, exposed to
 each function. The mark stack keeps bookmarks to locations in
the
 argument stack usable by each function. For instance, when dealing with
 a tied variable,
(internally, something with "P" magic) Perl has to
 call methods for accesses to the tied variables.
However, we need to
 separate the arguments exposed to the method to the argument exposed to
 the
original function - the store or fetch or whatever it may be.
 Here's roughly how the tied push is
implemented; see av_push in av.c:

 1	 PUSHMARK(SP);
 2	 EXTEND(SP,2);
 3	 PUSHs(SvTIED_obj((SV*)av, mg));
 4	 PUSHs(val);
 5	 PUTBACK;
 6	 ENTER;
 7	 call_method("PUSH", G_SCALAR|G_DISCARD);
 8	 LEAVE;

Let's examine the whole implementation, for practice:

 1	 PUSHMARK(SP);

Push the current state of the stack pointer onto the mark stack. This
 is so that when we've finished
adding items to the argument stack, Perl
 knows how many things we've added recently.

 2	 EXTEND(SP,2);
 3	 PUSHs(SvTIED_obj((SV*)av, mg));
 4	 PUSHs(val);

We're going to add two more items onto the argument stack: when you
 have a tied array, the PUSH
subroutine receives the object and the
 value to be pushed, and that's exactly what we have here - the
tied
 object, retrieved with SvTIED_obj, and the value, the SV val.

 5	 PUTBACK;

Next we tell Perl to update the global stack pointer from our internal
 variable: dSP only gave us a local
copy, not a reference to the
 global.

 6	 ENTER;
 7	 call_method("PUSH", G_SCALAR|G_DISCARD);
 8	 LEAVE;

ENTER and LEAVE localise a block of code - they make sure that
 all variables are tidied up, everything
that has been localised gets
 its previous value returned, and so on. Think of them as the { and } of a
Perl block.

To actually do the magic method call, we have to call a subroutine in
 Perl space: call_method takes
care of that, and it's described in perlcall. We call the PUSH method in scalar context, and we're
 going
to discard its return value. The call_method() function removes
 the top element of the mark stack, so
there is nothing for the caller
 to clean up.

Save stack
C doesn't have a concept of local scope, so perl provides one. We've
 seen that ENTER and LEAVE
are used as scoping braces; the save
 stack implements the C equivalent of, for example:

Perl version 5.26.1 documentation - perlinterp

Page 12http://perldoc.perl.org

 {
 local $foo = 42;
 ...
 }

See "Localizing changes" in perlguts for how to use the save stack.

MILLIONS OF MACROS
One thing you'll notice about the Perl source is that it's full of
 macros. Some have called the pervasive
use of macros the hardest thing
 to understand, others find it adds to clarity. Let's take an example,
 the
code which implements the addition operator:

 1 PP(pp_add)
 2 {
 3 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
 4 {
 5 dPOPTOPnnrl_ul;
 6 SETn(left + right);
 7 RETURN;
 8 }
 9 }

Every line here (apart from the braces, of course) contains a macro.
 The first line sets up the function
declaration as Perl expects for PP
 code; line 3 sets up variable declarations for the argument stack
and
 the target, the return value of the operation. Finally, it tries to see
 if the addition operation is
overloaded; if so, the appropriate
 subroutine is called.

Line 5 is another variable declaration - all variable declarations
 start with d - which pops from the top
of the argument stack two NVs
 (hence nn) and puts them into the variables right and left,
 hence
the rl. These are the two operands to the addition operator.
 Next, we call SETn to set the NV of the
return value to the result
 of adding the two values. This done, we return - the RETURN macro
 makes
sure that our return value is properly handled, and we pass the
 next operator to run back to the main
run loop.

Most of these macros are explained in perlapi, and some of the more
 important ones are explained in
perlxs as well. Pay special
 attention to "Background and PERL_IMPLICIT_CONTEXT" in perlguts for

information on the [pad]THX_? macros.

FURTHER READING
For more information on the Perl internals, please see the documents
 listed at "Internals and C
Language Interface" in perl.

