@ Pefl Perl version 5.26.1 documentation - perlapi

NAME

perlapi - autogenerated documentation for the perl public API

DESCRIPTION

This file contains the documentation of the perl public APl generated by embed.pl, specifically a listing
of functions, macros, flags, and variables that may be used by extension writers. At the end is a list of
functions which have yet to be documented. The interfaces of those are subject to change without
notice. Anything not listed here is not part of the public API, and should not be used by extension
writers at all. For these reasons, blindly using functions listed in proto.h is to be avoided when writing
extensions.

In Perl, unlike C, a string of characters may generally contain embedded NUL characters. Sometimes
in the documentation a Perl string is referred to as a "buffer" to distinguish it from a C string, but
sometimes they are both just referred to as strings.

Note that all Perl API global variables must be referenced with the PL__ prefix. Again, those not listed
here are not to be used by extension writers, and can be changed or removed without notice; same
with macros. Some macros are provided for compatibility with the older, unadorned names, but this
support may be disabled in a future release.

Perl was originally written to handle US-ASCII only (that is characters whose ordinal numbers are in
the range 0 - 127). And documentation and comments may still use the term ASCII, when sometimes
in fact the entire range from 0 - 255 is meant.

The non-ASCII characters below 256 can have various meanings, depending on various things. (See,
most notably, perllocale.) But usually the whole range can be referred to as 1ISO-8859-1. Often, the
term "Latin-1" (or "Latin1") is used as an equivalent for ISO-8859-1. But some people treat "Latin1" as
referring just to the characters in the range 128 through 255, or somethimes from 160 through 255.
This documentation uses "Latin1" and "Latin-1" to refer to all 256 characters.

Note that Perl can be compiled and run under either ASCII or EBCDIC (See perlebcdic). Most of the
documentation (and even comments in the code) ignore the EBCDIC possibility. For almost all
purposes the differences are transparent. As an example, under EBCDIC, instead of UTF-8,
UTF-EBCDIC is used to encode Unicode strings, and so whenever this documentation refers to utf8
(and variants of that name, including in function names), it also (essentially transparently) means
UTF-EBCDIC. But the ordinals of characters differ between ASCII, EBCDIC, and the UTF- encodings,
and a string encoded in UTF-EBCDIC may occupy a different number of bytes than in UTF-8.

The listing below is alphabetical, case insensitive.

Array Manipulation Functions
av_clear

Frees the all the elements of an array, leaving it empty. The XS equivalent of @array
= (). See also av_undef.

Note that it is possible that the actions of a destructor called directly or indirectly by
freeing an element of the array could cause the reference count of the array itself to be
reduced (e.g. by deleting an entry in the symbol table). So it is a possibility that the AV
could have been freed (or even reallocated) on return from the call unless you hold a
reference to it.

void av_clear(AV *av)

av_create_and_push
NOTE: this function is experimental and may change or be removed without notice.

Push an SV onto the end of the array, creating the array if necessary. A small internal
helper function to remove a commonly duplicated idiom.

http://perldoc.perl.org Page 1

O Perl

Perl version 5.26.1 documentation - perlapi

void av_create_and push(AV **const avp,
SV *const val)

av_create_and_unshift_one

av_delete

av_exists

av_extend

av_fetch

AVFILL

av_fill

NOTE: this function is experimental and may change or be removed without notice.

Unshifts an SV onto the beginning of the array, creating the array if necessary. A small
internal helper function to remove a commonly duplicated idiom.

SV** av_create_and_unshift_one(AV **const avp,
SV *const val)

Deletes the element indexed by key from the array, makes the element mortal, and
returns it. If flags equals G_DISCARD, the element is freed and NULL is returned.
NULL is also returned if key is out of range.

Perl equivalent: splice(@myarray, $key, 1, undef) (with the splice in void
context if G_DISCARD is present).

SV* av_delete(AV *av, SSize t key, 132 flags)

Returns true if the element indexed by key has been initialized.
This relies on the fact that uninitialized array elements are set to NULL.
Perl equivalent: exists($myarray[$key]).

bool av_exists(AV *av, SSize_ t key)

Pre-extend an array. The key is the index to which the array should be extended.
void av_extend(AV *av, SSize t key)

Returns the SV at the specified index in the array. The key is the index. If lval is true,
you are guaranteed to get a real SV back (in case it wasn't real before), which you can
then modify. Check that the return value is non-null before dereferencing it to a SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied arrays.

The rough perl equivalent is $myarray[$key].
Sv** av_fetch(AV *av, SSize_t key, 132 lval)

Same as av_top_index(). Deprecated, use av_top_index() instead.
int AVFILLCAV* av)

Set the highest index in the array to the given number, equivalent to Perl's $#array =
$Fill;.
The number of elements in the array will be Fill + 1 afterav_fill() returns. If the

array was previously shorter, then the additional elements appended are set to NULL.
If the array was longer, then the excess elements are freed. av_fill(av, -1) isthe

http://perldoc.perl.org

Page 2

O Perl

Perl version 5.26.1 documentation - perlapi

av_len

av_make

av_pop

av_push

av_shift

av_store

same as av_clear(av).
void av_Till(AV *av, SSize t fill)

Same as av_top_index. Note that, unlike what the name implies, it returns the highest
index in the array, so to get the size of the array you need to use av_len(av) + 1.
This is unlike sv_len, which returns what you would expect.

SSize_t av_len(AV *av)

Creates a new AV and populates it with a list of SVs. The SVs are copied into the
array, so they may be freed after the call to av_make. The new AV will have a
reference count of 1.

Perl equivalent: my @new_array = ($scalarl, $scalar2, $scalar3...);
AV* av_make(SSize_t size, SV **strp)

Removes one SV from the end of the array, reducing its size by one and returning the
SV (transferring control of one reference count) to the caller. Returns &PL_sv_undef
if the array is empty.
Perl equivalent: pop(@myarray) ;

SV* av_pop(AV *av)

Pushes an SV (transferring control of one reference count) onto the end of the array.
The array will grow automatically to accommodate the addition.

Perl equivalent: push @myarray, $valj;.
void av_push(AV *av, SV *val)

Removes one SV from the start of the array, reducing its size by one and returning the
SV (transferring control of one reference count) to the caller. Returns &PL_sv_undef
if the array is empty.
Perl equivalent: shift(@myarray) ;

SV* av_shift(AV *av)

Stores an SV in an array. The array index is specified as key. The return value will be
NULL if the operation failed or if the value did not need to be actually stored within the
array (as in the case of tied arrays). Otherwise, it can be dereferenced to get the SV*
that was stored there (= val)).

Note that the caller is responsible for suitably incrementing the reference count of val
before the call, and decrementing it if the function returned NULL.

Approximate Perl equivalent: splice(@myarray, $key, 1, $val).

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied arrays.

SV** av_store(AV *av, SSize t key, SV *val)

http://perldoc.perl.org

Page 3

O Perl

Perl version 5.26.1 documentation - perlapi

av_tindex

av_top_index

av_undef

av_unshift

get_av

newAvV

sortsv

sortsv_flags

Same as av_top_index().
int av_tindex(AV* av)

Returns the highest index in the array. The number of elements in the array is
av_top_index(av) + 1.Returns -1 if the array is empty.

The Perl equivalent for this is $#myarray.
(A slightly shorter form is av_tindex.)
SSize_t av_top_index(AV *av)

Undefines the array. The XS equivalent of undef(@array).

As well as freeing all the elements of the array (like av_clear()), this also frees the
memory used by the av to store its list of scalars.

See av_clear for a note about the array possibly being invalid on return.
void av_undef(AV *av)

Unshift the given number of undef values onto the beginning of the array. The array
will grow automatically to accommodate the addition.

Perl equivalent: unshift @myarray, ((undef) x $num);
void av_unshift(AV *av, SSize_t num)

Returns the AV of the specified Perl global or package array with the given name (so it
won't work on lexical variables). Flags are passed to gv_fetchpv. If GV_ADD is set
and the Perl variable does not exist then it will be created. If fFlags is zero and the
variable does not exist then NULL is returned.

Perl equivalent: @{""$name""}.
NOTE: the perl_ form of this function is deprecated.
AV* get_av(const char *name, 132 flags)

Creates a new AV. The reference count is set to 1.
Perl equivalent: my @array;.
AV* newAV(Q)

In-place sort an array of SV pointers with the given comparison routine.
Currently this always uses mergesort. See sortsv_flags for a more flexible routine.

void sortsv(SV** array, size t num_elts,
SVCOMPARE_t cmp)

In-place sort an array of SV pointers with the given comparison routine, with various

http://perldoc.perl.org

Page 4

O Perl

Perl version 5.26.1 documentation - perlapi

Callback Functions
call_argv

call_method

call_pv

call_sv

ENTER

SORTf_* flag options.

void sortsv_flags(SV** array, size_t num_elts,
SVCOMPARE_t cmp, U32 flags)

Performs a callback to the specified named and package-scoped Perl subroutine with
argv (a NULL-terminated array of strings) as arguments. See perlcall.

Approximate Perl equivalent: &{"*$sub_name''}(@$argv).
NOTE: the perl_ form of this function is deprecated.

132 call_argv(const char* sub_name, 132 flags,
char** argv)

Performs a callback to the specified Perl method. The blessed object must be on the
stack. See perlcall.

NOTE: the perl_ form of this function is deprecated.
132 call_method(const char* methname, 132 flags)

Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
132 call_pv(const char* sub_name, 132 flags)

Performs a callback to the Perl sub specified by the SV.

If neither the G_METHOD nor G_METHOD_NAMED flag is supplied, the SV may be any of
aCV, aGV, areference to a CV, a reference to a GV or SvPV(sv) will be used as the
name of the sub to call.

If the G_METHOD flag is supplied, the SV may be a reference to a CV or SvPV(sv) will
be used as the name of the method to call.

If the G_METHOD_NAMED flag is supplied, SvPV(sv) will be used as the name of the
method to call.

Some other values are treated specially for internal use and should not be depended
on.

See perlcall.
NOTE: the perl_ form of this function is deprecated.
132 call_sv(SV* sv, VOL 132 flags)

Opening bracket on a callback. See LEAVE and perlcall.
ENTER;

ENTER_with_name(name)

Same as ENTER, but when debugging is enabled it also associates the given literal
string with the new scope.

http://perldoc.perl.org

Page 5

@ Pefl Perl version 5.26.1 documentation - perlapi

ENTER_with_name(name);

eval_pv
Tells Perl to eval the given string in scalar context and return an SV* result.
NOTE: the perl_ form of this function is deprecated.
Sv* eval_pv(const char* p, 132 croak on_error)

eval_sv

Tells Perl to eval the string in the SV. It supports the same flags as call_sv, with
the obvious exception of G_EVAL. See perlcall.

NOTE: the perl_ form of this function is deprecated.
132 eval _sv(SV* sv, 132 flags)

FREETMPS
Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.
FREETMPS;

LEAVE
Closing bracket on a callback. See ENTER and perlcall.
LEAVE;

LEAVE_with_name(name)
Same as LEAVE, but when debugging is enabled it first checks that the scope has the
given hame. name must be a NUL-terminated literal string.

LEAVE_with_name(name);

SAVETMPS
Opening bracket for temporaries on a callback. See FREETMPS and perlcall.
SAVETMPS;

Character case changing

Perl uses "full" Unicode case mappings. This means that converting a single character to another
case may result in a sequence of more than one character. For example, the uppercase of 3 (LATIN
SMALL LETTER SHARP S) is the two character sequence SS. This presents some complications The
lowercase of all characters in the range 0..255 is a single character, and thus toLOWER_L1 is
furnished. But, toUPPER_L1 can't exist, as it couldn't return a valid result for all legal inputs. Instead
toUPPER_uvchr has an API that does allow every possible legal result to be returned.) Likewise no
other function that is crippled by not being able to give the correct results for the full range of possible
inputs has been implemented here.

toFOLD

Converts the specified character to foldcase. If the input is anything but an ASCII
uppercase character, that input character itself is returned. Variant toFOLD_A is
equivalent. (There is no equivalent to_FOLD_L1 for the full Latin1 range, as the full
generality of toFOLD_uvchr is needed there.)

U8 toFOLD(US ch)

toFOLD_utf8

http://perldoc.perl.org Page 6

O Perl

Perl version 5.26.1 documentation - perlapi

This is like toFOLD_utf8_safe, but doesn't have the e parameter The function
therefore can't check if it is reading beyond the end of the string. Starting in Perl v5.30,
it will take the e parameter, becoming a synonym for toFOLD_utf8_ safe. At that
time every program that uses it will have to be changed to successfully compile. In the
meantime, the first runtime call to toFOLD_utf8 from each call point in the program
will raise a deprecation warning, enabled by default. You can convert your program
now to use toFOLD_utf8_safe, and avoid the warnings, and get an extra measure
of protection, or you can wait until v5.30, when you'll be forced to add the e parameter.

UV toFOLD_utf8(U8* p, US* s, STRLEN* lenp)

toFOLD_utf8_ safe

toFOLD_uvchr

toLOWER

toLOWER_L1

toLOWER_LC

Converts the first UTF-8 encoded character in the sequence starting at p and
extending no further than e - 1 to its foldcase version, and stores that in UTF-8 in s,
and its length in bytes in 1enp. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_ CASE+1 bytes since the foldcase version may be longer than the
original character.

The first code point of the foldcased version is returned (but note, as explained at the
top of this section, that there may be more).

The suffix _safe in the function's name indicates that it will not attempt to read beyond
e - 1, provided that the constraint s < e is true (this is asserted for in -DDEBUGG ING
builds). If the UTF-8 for the input character is malformed in some way, the program
may croak, or the function may return the REPLACEMENT CHARACTER, at the
discretion of the implementation, and subject to change in future releases.

UV toFOLD utf8 safe(U8* p, U8* e, U8* s,
STRLEN* lenp)

Converts the code point cp to its foldcase version, and stores that in UTF-8 in s, and
its length in bytes in Ienp. The code point is interpreted as native if less than 256;
otherwise as Unicode. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the foldcase version may be longer than the
original character.

The first code point of the foldcased version is returned (but note, as explained at the
top of this section, that there may be more).

UV toFOLD_uvchr(UV cp, U8* s, STRLEN* lenp)

Converts the specified character to lowercase. If the input is anything but an ASCII
uppercase character, that input character itself is returned. Variant toLOWER_A is
equivalent.

U8 toLOWER(US ch)

Converts the specified Latinl character to lowercase. The results are undefined if the
input doesn't fit in a byte.

US toLOWER_L1(U8 ch)

Converts the specified character to lowercase using the current locale's rules, if
possible; otherwise returns the input character itself.

http://perldoc.perl.org

Page 7

O Perl

Perl version 5.26.1 documentation - perlapi

U8 toLOWER_LC(U8 ch)

toLOWER_utf8

This is like toLOWER_utf8_ safe, but doesn't have the e parameter The function
therefore can't check if it is reading beyond the end of the string. Starting in Perl v5.30,
it will take the e parameter, becoming a synonym for toLOWER_utf8_safe. At that
time every program that uses it will have to be changed to successfully compile. In the
meantime, the first runtime call to toLOWER_utf8 from each call point in the program
will raise a deprecation warning, enabled by default. You can convert your program
now to use toLOWER_utf8_safe, and avoid the warnings, and get an extra measure
of protection, or you can wait until v5.30, when you'll be forced to add the e parameter.

UV toLOWER_utf8(U8* p, U8* s, STRLEN* lenp)

toLOWER_utf8_safe

Converts the first UTF-8 encoded character in the sequence starting at p and
extending no further than e - 1 to its lowercase version, and stores that in UTF-8 in s
, and its length in bytes in lenp. Note that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1 bytes since the lowercase version may be longer
than the original character.

The first code point of the lowercased version is returned (but note, as explained at the
top of this section, that there may be more).

The suffix _safe in the function's name indicates that it will not attempt to read beyond
e - 1, provided that the constraint s < e is true (this is asserted for in -DDEBUGG ING
builds). If the UTF-8 for the input character is malformed in some way, the program
may croak, or the function may return the REPLACEMENT CHARACTER, at the
discretion of the implementation, and subject to change in future releases.

UV toLOWER_utf8 safe(U8* p, U8* e, U8* s,
STRLEN* lenp)

toLOWER_uvchr

toTITLE

toTITLE_utf8

Converts the code point cp to its lowercase version, and stores that in UTF-8 in s, and
its length in bytes in lenp. The code point is interpreted as native if less than 256;
otherwise as Unicode. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the lowercase version may be longer than the
original character.

The first code point of the lowercased version is returned (but note, as explained at the
top of this section, that there may be more).

UV toLOWER_uvchr(UV cp, U8* s, STRLEN* lenp)

Converts the specified character to titlecase. If the input is anything but an ASCII
lowercase character, that input character itself is returned. Variant toTITLE_A is
equivalent. (There is no toTITLE_L1 for the full Latinl range, as the full generality of
toTITLE uvchr is needed there. Titlecase is not a concept used in locale handling, so
there is no functionality for that.)

U8 toTITLE(US ch)

This is like toLOWER_utf8_ safe, but doesn't have the e parameter The function
therefore can't check if it is reading beyond the end of the string. Starting in Perl v5.30,

http://perldoc.perl.org

Page 8

O Perl

Perl version 5.26.1 documentation - perlapi

it will take the e parameter, becoming a synonym for toTITLE_utf8_ safe. At that
time every program that uses it will have to be changed to successfully compile. In the
meantime, the first runtime call to toTITLE_utf8 from each call point in the program
will raise a deprecation warning, enabled by default. You can convert your program
now to use toTITLE_utf8_safe, and avoid the warnings, and get an extra measure
of protection, or you can wait until v5.30, when you'll be forced to add the e parameter.

UV toTITLE utf8(US* p, US* s, STRLEN* lenp)

toTITLE utf8_safe

toTITLE_ uvchr

toUPPER

toUPPER_utf8

Converts the first UTF-8 encoded character in the sequence starting at p and
extending no further than e - 1 to its titlecase version, and stores that in UTF-8 in s,
and its length in bytes in 1enp. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the titlecase version may be longer than the
original character.

The first code point of the titlecased version is returned (but note, as explained at the
top of this section, that there may be more).

The suffix _safe in the function's name indicates that it will not attempt to read beyond
e - 1, provided that the constraint s < e is true (this is asserted for in -DDEBUGG ING
builds). If the UTF-8 for the input character is malformed in some way, the program
may croak, or the function may return the REPLACEMENT CHARACTER, at the
discretion of the implementation, and subject to change in future releases.

UV toTITLE_ utf8 safe(U8* p, U8* e, U8* s,
STRLEN* lenp)

Converts the code point cp to its titlecase version, and stores that in UTF-8 in s, and
its length in bytes in Ienp. The code point is interpreted as native if less than 256;
otherwise as Unicode. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the titlecase version may be longer than the
original character.

The first code point of the titlecased version is returned (but note, as explained at the
top of this section, that there may be more).

UV toTITLE_uvchr(UV cp, U8* s, STRLEN* lenp)

Converts the specified character to uppercase. If the input is anything but an ASCII
lowercase character, that input character itself is returned. Variant toUPPER_A is
equivalent.

U8 toUPPER(US ch)

This is like toUPPER_utf8 safe, but doesn't have the e parameter The function
therefore can't check if it is reading beyond the end of the string. Starting in Perl v5.30,
it will take the e parameter, becoming a synonym for toUPPER_utf8_ safe. At that
time every program that uses it will have to be changed to successfully compile. In the
meantime, the first runtime call to toUPPER_utf8 from each call point in the program
will raise a deprecation warning, enabled by default. You can convert your program
now to use toUPPER_utf8_safe, and avoid the warnings, and get an extra measure
of protection, or you can wait until v5.30, when you'll be forced to add the e parameter.

UV toUPPER_utf8(US* p, U8* s, STRLEN* lenp)

http://perldoc.perl.org

Page 9

@ Pefl Perl version 5.26.1 documentation - perlapi

toUPPER_utf8_safe

Converts the first UTF-8 encoded character in the sequence starting at p and
extending no further than e - 1 to its uppercase version, and stores that in UTF-8 in
s, and its length in bytes in 1enp. Note that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1 bytes since the uppercase version may be longer
than the original character.

The first code point of the uppercased version is returned (but note, as explained at
the top of this section, that there may be more).

The suffix _safe in the function's name indicates that it will not attempt to read beyond
e - 1, provided that the constraint s < e is true (this is asserted for in -DDEBUGG ING
builds). If the UTF-8 for the input character is malformed in some way, the program
may croak, or the function may return the REPLACEMENT CHARACTER, at the
discretion of the implementation, and subject to change in future releases.

UV toUPPER_utf8_ safe(U8* p, U8* e, U8* s,
STRLEN* lenp)

toUPPER_uvchr

Converts the code point cp to its uppercase version, and stores that in UTF-8 in s, and
its length in bytes in Ienp. The code point is interpreted as native if less than 256;
otherwise as Unicode. Note that the buffer pointed to by s needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the uppercase version may be longer than the
original character.

The first code point of the uppercased version is returned (but note, as explained at
the top of this section, that there may be more.)

UV toUPPER_uvchr(UV cp, U8* s, STRLEN* lenp)

Character classification

This section is about functions (really macros) that classify characters into types, such as punctuation
versus alphabetic, etc. Most of these are analogous to regular expression character classes. (See
"POSIX Character Classes" in perlrecharclass.) There are several variants for each class. (Not all
macros have all variants; each item below lists the ones valid for it.) None are affected by use bytes
, and only the ones with LC in the name are affected by the current locale.

The base function, e.g., iISALPHA(), takes an octet (either a char or a U8) as input and returns a
boolean as to whether or not the character represented by that octet is (or on non-ASCII platforms,
corresponds to) an ASCII character in the named class based on platform, Unicode, and Perl rules. If
the input is a number that doesn't fit in an octet, FALSE is returned.

Variant isFOO_A (e.g., iISALPHA_A(Q)) is identical to the base function with no suffix **_A". This
variant is used to emphasize by its name that only ASCII-range characters can return TRUE.

Variant iIsFOO_L1 imposes the Latin-1 (or EBCDIC equivalent) character set onto the platform. That
is, the code points that are ASCII are unaffected, since ASCII is a subset of Latin-1. But the
non-ASCII code points are treated as if they are Latin-1 characters. For example, iISWORDCHAR_L1()
will return true when called with the code point 0xDF, which is a word character in both ASCII and
EBCDIC (though it represents different characters in each).

Variant 1sFOO_uvchr is like the 1sFOO_L1 variant, but accepts any UV code point as input. If the
code point is larger than 255, Unicode rules are used to determine if it is in the character class. For
example, iISWORDCHAR_uvchr (0x100) returns TRUE, since 0x100 is LATIN CAPITAL LETTER A
WITH MACRON in Unicode, and is a word character.

Variant isFOO_utf8_safe is like isFOO_uvchr, but is used for UTF-8 encoded strings. Each call
classifies one character, even if the string contains many. This variant takes two parameters. The first,

http://perldoc.perl.org Page 10

@ Pefl Perl version 5.26.1 documentation - perlapi

p, is a pointer to the first byte of the character to be classified. (Recall that it may take more than one
byte to represent a character in UTF-8 strings.) The second parameter, e, points to anywhere in the
string beyond the first character, up to one byte past the end of the entire string. The suffix _safe in
the function's name indicates that it will not attempt to read beyond e - 1, provided that the
constraint s < e is true (this is asserted for in ~-DDEBUGG ING builds). If the UTF-8 for the input
character is malformed in some way, the program may croak, or the function may return FALSE, at
the discretion of the implementation, and subject to change in future releases.

Variant isFOO_utf8 is like isFOO_utf8_ safe, but takes just a single parameter, p, which has the
same meaning as the corresponding parameter does in isFO0_utf8_safe. The function therefore
can't check if it is reading beyond the end of the string. Starting in Perl v5.30, it will take a second
parameter, becoming a synonym for isFOO_utf8_safe. At that time every program that uses it will
have to be changed to successfully compile. In the meantime, the first runtime call to isFOO_utf8
from each call point in the program will raise a deprecation warning, enabled by default. You can
convert your program now to use isFOO_utf8 safe, and avoid the warnings, and get an extra
measure of protection, or you can wait until v5.30, when you'll be forced to add the e parameter.

Variant isFOO_LC is like the 1sFOO_A and isFOO_L1 variants, but the result is based on the current
locale, which is what LC in the name stands for. If Perl can determine that the current locale is a
UTF-8 locale, it uses the published Unicode rules; otherwise, it uses the C library function that gives
the named classification. For example, isDIGIT_LC() when not in a UTF-8 locale returns the result
of calling isdigit(). FALSE is always returned if the input won't fit into an octet. On some platforms
where the C library function is known to be defective, Perl changes its result to follow the POSIX
standard's rules.

Variant 1sFOO_LC_uvchr is like isFOO_LC, but is defined on any UV. It returns the same as 1sFO0
_LC for input code points less than 256, and returns the hard-coded, not-affected-by-locale, Unicode
results for larger ones.

Variant iIsFOO_LC utf8 safe is like isFOO_LC uvchr, but is used for UTF-8 encoded strings.
Each call classifies one character, even if the string contains many. This variant takes two
parameters. The first, p, is a pointer to the first byte of the character to be classified. (Recall that it
may take more than one byte to represent a character in UTF-8 strings.) The second parameter, e,
points to anywhere in the string beyond the first character, up to one byte past the end of the entire
string. The suffix _safe in the function's name indicates that it will not attempt to read beyond e - 1,
provided that the constraint s < e is true (this is asserted for in -DDEBUGG ING builds). If the UTF-8
for the input character is malformed in some way, the program may croak, or the function may return
FALSE, at the discretion of the implementation, and subject to change in future releases.

Variant isFOO_LC_utf8is like iIsFOO_LC_utf8_ safe, but takes just a single parameter, p, which
has the same meaning as the corresponding parameter does in iIsFOO_LC utf8_ safe. The
function therefore can't check if it is reading beyond the end of the string. Starting in Perl v5.30, it will
take a second parameter, becoming a synonym for isFOO_LC_utf8_safe. At that time every
program that uses it will have to be changed to successfully compile. In the meantime, the first
runtime call to iIsFOO_LC_utf8 from each call point in the program will raise a deprecation warning,
enabled by default. You can convert your program now to use 1sFOO_LC_utf8_ safe, and avoid the
warnings, and get an extra measure of protection, or you can wait until v5.30, when you'll be forced to
add the e parameter.

iISALPHA

Returns a boolean indicating whether the specified character is an alphabetic
character, analogous to m/[[:alpha:]]/. See the top of this section for an
explanation of variants i1SALPHA_A, iSALPHA L1, isALPHA uvchr,
iSALPHA utf8 safe, isALPHA LC, isALPHA LC uvchr, and
iSALPHA LC utf8_safe.

bool isALPHA(char ch)

http://perldoc.perl.org Page 11

O Perl

Perl version 5.26.1 documentation - perlapi

iISALPHANUMERIC

iSASCII

iISBLANK

iISCNTRL

isDIGIT

iISGRAPH

Returns a boolean indicating whether the specified character is a either an alphabetic
character or decimal digit, analogous to m/[[zalnum:]]/. See the top of this section
for an explanation of variants ISALPHANUMERIC_A, iSALPHANUMERIC L1,
iSALPHANUMERIC_uvchr, isALPHANUMERIC_utf8_safe, iSALPHANUMERIC_LC,
iSALPHANUMERIC _LC_uvchr, and isALPHANUMERIC_LC utf8 safe.

bool isALPHANUMERIC(char ch)

Returns a boolean indicating whether the specified character is one of the 128
characters in the ASCII character set, analogous to m/[[zascii:]]/. On non-ASCII
platforms, it returns TRUE iff this character corresponds to an ASCII character.
Variants iSASCI1_A() and 1sASCI1_L1() are identical to iSASCI1(). See the top
of this section for an explanation of variants iSASCI11_uvchr, isASCI1_utf8_safe,
iSASCII1_LC, isASCII_LC uvchr, and isASCI1_LC utf8 safe. Note, however,
that some platforms do not have the C library routine isascii(). In these cases, the
variants whose names contain LC are the same as the corresponding ones without.

Also note, that because all ASCII characters are UTF-8 invariant (meaning they have
the exact same representation (always a single byte) whether encoded in UTF-8 or
not), iSASCI I will give the correct results when called with any byte in any string
encoded or not in UTF-8. And similarly isASCI1_utf8_ safe will work properly on
any string encoded or not in UTF-8.

bool isASCII(char ch)

Returns a boolean indicating whether the specified character is a character considered
to be a blank, analogous to m/[[:blank:]]/. See the top of this section for an
explanation of variants isBLANK_A, iSBLANK_ L1, isBLANK uvchr,
iSBLANK utf8 safe, isBLANK_LC, isBLANK LC uvchr, and
isBLANK LC utf8 safe. Note, however, that some platforms do not have the C
library routine isblank(). In these cases, the variants whose names contain LC are
the same as the corresponding ones without.

bool isBLANK(char ch)

Returns a boolean indicating whether the specified character is a control character,
analogous to m/[[:cntrl:]]/. See the top of this section for an explanation of
variants iIsCNTRL_A, isCNTRL_L1, isCNTRL_uvchr, isCNTRL_utf8_safe,
iSCNTRL_LC, isCNTRL_LC_uvchr, and isCNTRL_LC_utf8_safe On EBCDIC
platforms, you almost always want to use the isCNTRL_L1 variant.

bool isCNTRL(char ch)

Returns a boolean indicating whether the specified character is a digit, analogous to
m/[[:digit:]]/. Variants isDIGIT_A and isDIGIT_L1 are identical to isDIGIT.
See the top of this section for an explanation of variants isDIGIT_uvchr,
isDIGIT utf8 safe, isDIGIT_LC, isDIGIT_LC_ uvchr, and

isDIGIT_LC utf8 safe.

bool isDIGIT(char ch)

http://perldoc.perl.org

Page 12

O Perl

Perl version 5.26.1 documentation - perlapi

iSIDCONT

iSIDFIRST

iSLOWER

iISOCTAL

iSPRINT

iISPSXSPC

Returns a boolean indicating whether the specified character is a graphic character,
analogous to m/[[:graph:]]/. See the top of this section for an explanation of
variants iSGRAPH_A, ISGRAPH_L1, isGRAPH_ uvchr, isGRAPH_ utf8_ safe,
iSGRAPH_LC, isGRAPH_LC_uvchr, and isGRAPH_LC_utf8_safe.

bool isGRAPH(char ch)

Returns a boolean indicating whether the specified character can be the second or
succeeding character of an identifier. This is very close to, but not quite the same as
the official Unicode property X1D_Continue. The difference is that this returns true
only if the input character also matches iSWORDCHAR. See the top of this section for
an explanation of variants iSIDCONT_A, isSIDCONT_L1, isIDCONT_uvchr,
isIDCONT_utf8_safe, isIDCONT_LC, isIDCONT_LC uvchr, and
isIDCONT_LC utf8_safe.

bool isIDCONT(char ch)

Returns a boolean indicating whether the specified character can be the first character
of an identifier. This is very close to, but not quite the same as the official Unicode
property XID_Start. The difference is that this returns true only if the input character
also matches isSWORDCHAR. See the top of this section for an explanation of variants
iSIDFIRST_A, isIDFIRST L1, isIDFIRST uvchr, isIDFIRST utf8 safe,
isIDFIRST_LC, isIDFIRST_LC_uvchr, and isIDFIRST_LC_utf8_ safe.

bool isIDFIRST(char ch)

Returns a boolean indicating whether the specified character is a lowercase character,
analogous to m/[[: lower:]]/. See the top of this section for an explanation of
variants iSLOWER_A, isLOWER_L1, iSLOWER_uvchr, isLOWER_utf8_safe,
iSLOWER_LC, iSLOWER_LC_uvchr, and isLOWER_LC_utf8_safe.

bool isLOWER(char ch)

Returns a boolean indicating whether the specified character is an octal digit, [0-7].
The only two variants are iSOCTAL_A and iSOCTAL_L1; each is identical to iSOCTAL

bool isOCTAL(char ch)

Returns a boolean indicating whether the specified character is a printable character,
analogous to m/[[:print:]]/. See the top of this section for an explanation of
variants iSPRINT_A, isPRINT_L1, isPRINT_uvchr, isPRINT_utf8_safe,
iSPRINT_LC, isPRINT_LC_uvchr, and isPRINT_LC_utf8_safe.

bool isPRINT(char ch)

(short for Posix Space) Starting in 5.18, this is identical in all its forms to the
corresponding isSPACE() macros. The locale forms of this macro are identical to
their corresponding isSPACE() forms in all Perl releases. In releases prior to 5.18,
the non-locale forms differ from their isSPACE() forms only in that the 1SSPACE()

http://perldoc.perl.org

Page 13

O Perl

Perl version 5.26.1 documentation - perlapi

iISPUNCT

iISSPACE

iSUPPER

forms don't match a Vertical Tab, and the isPSXSPC() forms do. Otherwise they are
identical. Thus this macro is analogous to what m/[[: space:]]/ matches in a
regular expression. See the top of this section for an explanation of variants
iSPSXSPC_A, i1sPSXSPC_L1, isPSXSPC_uvchr, isPSXSPC_utf8 safe,
iSPSXSPC_LC, isPSXSPC_LC uvchr, and isPSXSPC_LC utf8 safe.

bool isPSXSPC(char ch)

Returns a boolean indicating whether the specified character is a punctuation
character, analogous to m/[[:punct:]]/. Note that the definition of what is
punctuation isn't as straightforward as one might desire. See "POSIX Character
Classes" in perlrecharclass for details. See the top of this section for an explanation of
variants isSPUNCT_A, isPUNCT_L1, isPUNCT_uvchr, isPUNCT_utf8_safe,
iSPUNCT_LC, isPUNCT_LC_uvchr, and isPUNCT_LC_utf8_safe.

bool isPUNCT(char ch)

Returns a boolean indicating whether the specified character is a whitespace
character. This is analogous to what m/\s/ matches in a regular expression. Starting
in Perl 5.18 this also matches what m/[[: space:]]/ does. Prior to 5.18, only the
locale forms of this macro (the ones with LC in their names) matched precisely what
m/[[:space:]]/ does. In those releases, the only difference, in the non-locale
variants, was that 1sSPACE() did not match a vertical tab. (See isPSXSPC for a
macro that matches a vertical tab in all releases.) See the top of this section for an
explanation of variants 1SSPACE_A, 1SSPACE_L1, isSPACE_uvchr,
iSSPACE_utf8 safe, isSPACE_LC, isSPACE_LC uvchr, and
iSSPACE_LC utf8 safe.

bool isSPACE(char ch)

Returns a boolean indicating whether the specified character is an uppercase
character, analogous to m/[[:upper:]]/. See the top of this section for an
explanation of variants iISUPPER_A, 1SUPPER_L1, isUPPER_uvchr,
iSUPPER_utf8_safe, isUPPER_LC, isUPPER_LC_uvchr, and
isUPPER _LC utf8 safe.

bool isUPPER(char ch)

iISWORDCHAR

Returns a boolean indicating whether the specified character is a character that is a
word character, analogous to what m/\w/ and m/[[:word:]]/ match in a regular
expression. A word character is an alphabetic character, a decimal digit, a connecting
punctuation character (such as an underscore), or a "mark" character that attaches to
one of those (like some sort of accent). iISALNUM() is a synonym provided for
backward compatibility, even though a word character includes more than the standard
C language meaning of alphanumeric. See the top of this section for an explanation of
variants 1SWORDCHAR_A, isSWORDCHAR_L1, isWORDCHAR_uvchr, and
iSWORDCHAR_utf8_safe. isWORDCHAR_LC, isWORDCHAR_LC_uvchr, and
iSWORDCHAR_LC_utf8_safe are also as described there, but additionally include
the platform's native underscore.

bool isWORDCHAR(char ch)

http://perldoc.perl.org

Page 14

O Perl

Perl version 5.26.1 documentation - perlapi

isXDIGIT

Returns a boolean indicating whether the specified character is a hexadecimal digit. In
the ASCII range these are [0-9A-Fa-T]. Variants isXDIGIT_A(Q) and
isXDIGIT_L1() are identical to isXDIGIT(). See the top of this section for an
explanation of variants isXDIGIT_uvchr, isXDIGIT_utf8_safe, isXDIGIT_LC,
isXDIGIT_LC uvchr,and isXDIGIT_LC utf8 safe.

bool isXDIGIT(char ch)

Cloning an interpreter

perl_clone

Create and return a new interpreter by cloning the current one.
perl_clone takes these flags as parameters:

CLONETF_COPY_STACKS - is used to, well, copy the stacks also, without it we only
clone the data and zero the stacks, with it we copy the stacks and the new perl
interpreter is ready to run at the exact same point as the previous one. The
pseudo-fork code uses COPY_STACKS while the threads->create doesn't.

CLONEFf_KEEP_PTR_TABLE - perl_clone keeps a ptr_table with the pointer of the
old variable as a key and the new variable as a value, this allows it to check if
something has been cloned and not clone it again but rather just use the value and
increase the refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill the
ptr_table using the function ptr_table_ free(PL_ptr_table); PL_ptr_table
= NULL;, reason to keep it around is if you want to dup some of your own variable
who are outside the graph perl scans, an example of this code is in threads.xs create.

CLONEF_CLONE_HOST - This is a win32 thing, it is ignored on unix, it tells perls
win32host code (which is c++) to clone itself, this is needed on win32 if you want to run
two threads at the same time, if you just want to do some stuff in a separate perl
interpreter and then throw it away and return to the original one, you don't need to do
anything.
PerliInterpreter* perl_clone(
PerliInterpreter *proto_perl,
uv flags

Compile-time scope hooks

BhkDISABLE

BhKENABLE

NOTE: this function is experimental and may change or be removed without notice.

Temporarily disable an entry in this BHK structure, by clearing the appropriate flag.
which is a preprocessor token indicating which entry to disable.

void BhkDISABLE(BHK *hk, which)

NOTE: this function is experimental and may change or be removed without notice.

Re-enable an entry in this BHK structure, by setting the appropriate flag. which is a
preprocessor token indicating which entry to enable. This will assert (under
-DDEBUGGING) if the entry doesn't contain a valid pointer.

void BhKENABLE(BHK *hk, which)

BhKENTRY_set

NOTE: this function is experimental and may change or be removed without notice.

http://perldoc.perl.org

Page 15

O Perl

Perl version 5.26.1 documentation - perlapi

Set an entry in the BHK structure, and set the flags to indicate it is valid. which is a
preprocessing token indicating which entry to set. The type of ptr depends on the
entry.

void BhKENTRY_set(BHK *hk, which, void *ptr)

blockhook_register

COP Hint Hashes
cophh_2hv

cophh_copy

NOTE: this function is experimental and may change or be removed without notice.

Register a set of hooks to be called when the Perl lexical scope changes at compile
time. See "Compile-time scope hooks" in perlguts.

NOTE: this function must be explicitly called as Perl_blockhook_register with an
aTHX_ parameter.

void Perl_blockhook_register(pTHX_ BHK *hk)

NOTE: this function is experimental and may change or be removed without notice.

Generates and returns a standard Perl hash representing the full set of key/value pairs
in the cop hints hash cophh. flags is currently unused and must be zero.

HV * cophh_2hv(const COPHH *cophh, U32 flags)

NOTE: this function is experimental and may change or be removed without notice.
Make and return a complete copy of the cop hints hash cophh.
COPHH * cophh_copy(COPHH *cophh)

cophh_delete_pv

NOTE: this function is experimental and may change or be removed without notice.
Like cophh_delete_pvn, but takes a nul-terminated string instead of a string/length
pair.

COPHH * cophh_delete_pv(const COPHH *cophh,
const char *key, U32 hash,
U322 flags)

cophh_delete_pvn

NOTE: this function is experimental and may change or be removed without notice.

Delete a key and its associated value from the cop hints hash cophh, and returns the
modified hash. The returned hash pointer is in general not the same as the hash
pointer that was passed in. The input hash is consumed by the function, and the
pointer to it must not be subsequently used. Use cophh_copy if you need both hashes.

The key is specified by keypv and keylen. If Flags has the COPHH_KEY_UTF8 bit
set, the key octets are interpreted as UTF-8, otherwise they are interpreted as Latin-1.
hash is a precomputed hash of the key string, or zero if it has not been precomputed.

COPHH * cophh_delete pvn(COPHH *cophh,
const char *keypv,
STRLEN keylen, U32 hash,
u32 flags)

cophh_delete_pvs

http://perldoc.perl.org

Page 16

@ Pefl Perl version 5.26.1 documentation - perlapi

NOTE: this function is experimental and may change or be removed without notice.

Like cophh_delete_pvn, but takes a NUL-terminated literal string instead of a
string/length pair, and no precomputed hash.

COPHH * cophh_delete_pvs(const COPHH *cophh,
const char *key, U32 flags)

cophh_delete_sv
NOTE: this function is experimental and may change or be removed without notice.
Like cophh_delete_pvn, but takes a Perl scalar instead of a string/length pair.

COPHH * cophh_delete_sv(const COPHH *cophh, SV *key,
U32 hash, U32 flags)

cophh_fetch_pv
NOTE: this function is experimental and may change or be removed without notice.
Like cophh_fetch_pvn, but takes a nul-terminated string instead of a string/length pair.

SV * cophh_fetch_pv(const COPHH *cophh,
const char *key, U32 hash,
U322 flags)

cophh_fetch_pvn
NOTE: this function is experimental and may change or be removed without notice.

Look up the entry in the cop hints hash cophh with the key specified by keypv and
keylen. If fFlags has the COPHH_KEY_UTF8 bit set, the key octets are interpreted as
UTF-8, otherwise they are interpreted as Latin-1. hash is a precomputed hash of the
key string, or zero if it has not been precomputed. Returns a mortal scalar copy of the
value associated with the key, or &PL_sv_placeholder if there is no value
associated with the key.

SV * cophh_fetch_pvn(const COPHH *cophh,
const char *keypv,
STRLEN keylen, U32 hash,
u32 flags)

cophh_fetch_pvs
NOTE: this function is experimental and may change or be removed without notice.

Like cophh_fetch_pvn, but takes a NUL-terminated literal string instead of a
string/length pair, and no precomputed hash.

SV * cophh_fetch_pvs(const COPHH *cophh,
const char *key, U32 flags)

cophh_fetch_sv
NOTE: this function is experimental and may change or be removed without notice.
Like cophh_fetch_pvn, but takes a Perl scalar instead of a string/length pair.

SV * cophh_fetch_sv(const COPHH *cophh, SV *key,
U32 hash, U32 flags)

cophh_free
NOTE: this function is experimental and may change or be removed without notice.
Discard the cop hints hash cophh, freeing all resources associated with it.

http://perldoc.perl.org Page 17

@ Pefl Perl version 5.26.1 documentation - perlapi

void cophh_free(COPHH *cophh)

cophh_new_empty
NOTE: this function is experimental and may change or be removed without notice.
Generate and return a fresh cop hints hash containing no entries.
COPHH * cophh_new_empty()

cophh_store_pv
NOTE: this function is experimental and may change or be removed without notice.
Like cophh_store_pvn, but takes a nul-terminated string instead of a string/length pair.

COPHH * cophh_store_ pv(const COPHH *cophh,
const char *key, U32 hash,
SV *value, U32 flags)

cophh_store_pvn
NOTE: this function is experimental and may change or be removed without notice.

Stores a value, associated with a key, in the cop hints hash cophh, and returns the
modified hash. The returned hash pointer is in general not the same as the hash
pointer that was passed in. The input hash is consumed by the function, and the
pointer to it must not be subsequently used. Use cophh_copy if you need both hashes.

The key is specified by keypv and keylen. If Flags has the COPHH_KEY_UTF8 bit
set, the key octets are interpreted as UTF-8, otherwise they are interpreted as Latin-1.
hash is a precomputed hash of the key string, or zero if it has not been precomputed.

value is the scalar value to store for this key. value is copied by this function, which
thus does not take ownership of any reference to it, and later changes to the scalar will
not be reflected in the value visible in the cop hints hash. Complex types of scalar will
not be stored with referential integrity, but will be coerced to strings.

COPHH * cophh_store_pvn(COPHH *cophh, const char *keypv,
STRLEN keylen, U32 hash,
SV *value, U32 flags)

cophh_store_pvs
NOTE: this function is experimental and may change or be removed without notice.

Like cophh_store_pvn, but takes a NUL-terminated literal string instead of a
string/length pair, and no precomputed hash.

COPHH * cophh_store_pvs(const COPHH *cophh,
const char *key, SV *value,
u32 flags)

cophh_store_sv
NOTE: this function is experimental and may change or be removed without notice.
Like cophh_store_pvn, but takes a Perl scalar instead of a string/length pair.

COPHH * cophh_store_sv(const COPHH *cophh, SV *key,
U32 hash, SV *value, U32 flags)

COP Hint Reading
cop_hints_2hv
Generates and returns a standard Perl hash representing the full set of hint entries in

http://perldoc.perl.org Page 18

@ Pefl Perl version 5.26.1 documentation - perlapi

the cop cop. Flags is currently unused and must be zero.
HV * cop_hints_2hv(const COP *cop, U32 flags)

cop_hints_fetch_pv
Like cop_hints_fetch_pvn, but takes a nul-terminated string instead of a string/length
pair.
SV * cop_hints_fetch_pv(const COP *cop,
const char *key, U32 hash,
U322 flags)

cop_hints_fetch_pvn

Look up the hint entry in the cop cop with the key specified by keypv and keylen. If
flags has the COPHH_KEY_UTF8 bit set, the key octets are interpreted as UTF-8,
otherwise they are interpreted as Latin-1. hash is a precomputed hash of the key
string, or zero if it has not been precomputed. Returns a mortal scalar copy of the
value associated with the key, or &PL_sv_placeholder if there is no value
associated with the key.
SV * cop_hints_fetch_pvn(const COP *cop,

const char *keypv,

STRLEN keylen, U32 hash,

U322 flags)

cop_hints_fetch_pvs
Like cop_hints_fetch_pvn, but takes a NUL-terminated literal string instead of a
string/length pair, and no precomputed hash.

SV * cop_hints_fetch_pvs(const COP *cop,
const char *key, U32 flags)

cop_hints_fetch_sv
Like cop_hints_fetch_pvn, but takes a Perl scalar instead of a string/length pair.

SV * cop_hints_fetch_sv(const COP *cop, SV *key,
U32 hash, U32 flags)

Custom Operators
custom_op_register
Register a custom op. See "Custom Operators" in perlguts.
NOTE: this function must be explicitly called as Perl_custom_op_register with an
aTHX_ parameter.

void Perl_custom _op_register(pTHX
Perl _ppaddr_t ppaddr,
const XOP *xop)

custom_op_xop
Return the XOP structure for a given custom op. This macro should be considered
internal to OP_NAME and the other access macros: use them instead. This macro does
call a function. Prior to 5.19.6, this was implemented as a function.
NOTE: this function must be explicitly called as Perl_custom_op_xop with an aTHX_
parameter.
const XOP * Perl_custom_op_xop(pTHX_ const OP *0)

http://perldoc.perl.org Page 19

@ Pefl Perl version 5.26.1 documentation - perlapi

XopDISABLE

Temporarily disable a member of the XOP, by clearing the appropriate flag.
void XopDISABLE(XOP *xop, which)

XopENABLE
Reenable a member of the XOP which has been disabled.
void XopENABLE(XOP *xop, which)

XOpENTRY

Return a member of the XOP structure. which is a cpp token indicating which entry to
return. If the member is not set this will return a default value. The return type depends
on which. This macro evaluates its arguments more than once. If you are using
Perl_custom_op_xop to retreive a XOP * from a OP *, use the more efficient
XOopENTRYCUSTOM instead.

XOpENTRY(XOP *xop, which)

XopENTRYCUSTOM
Exactly like XOpENTRY (XopENTRY (Perl_custom_op_xop(aTHX_ o), which)
but more efficient. The which parameter is identical to XopENTRY.

XopENTRYCUSTOM(const OP *o, which)

XOpENTRY _set

Set a member of the XOP structure. which is a cpp token indicating which entry to
set. See "Custom Operators" in perlguts for details about the available members and
how they are used. This macro evaluates its argument more than once.

void XopENTRY_set(XOP *xop, which, value)

XopFLAGS
Return the XOP's flags.
U32 XopFLAGS(XOP *xop)

CV Manipulation Functions

This section documents functions to manipulate CVs which are code-values, or subroutines. For more
information, see perlguts.

caller_cx

The XSUB-writer's equivalent of caller(). The returned PERL_CONTEXT structure can
be interrogated to find all the information returned to Perl by cal Ier. Note that XSUBs
don't get a stack frame, so caller_cx(0, NULL) will return information for the
immediately-surrounding Perl code.

This function skips over the automatic calls to &DB: : sub made on the behalf of the
debugger. If the stack frame requested was a sub called by DB: : sub, the return value
will be the frame for the call to DB: zsub, since that has the correct line number/etc. for
the call site. If dbcxp is non-NULL, it will be set to a pointer to the frame for the sub call
itself.

const PERL_CONTEXT * caller_cx(
132 level,
const PERL_CONTEXT **dbcxp

http://perldoc.perl.org Page 20

O Perl

Perl version 5.26.1 documentation - perlapi

CvSTASH

find_runcv

get_cv

get_cvn_flags

Returns the stash of the CV. A stash is the symbol table hash, containing the
package-scoped variables in the package where the subroutine was defined. For more
information, see perlguts.

This also has a special use with XS AUTOLOAD subs. See "Autoloading with XSUBs"
in perlguts.
HV* CvSTASH(CV* cv)

Locate the CV corresponding to the currently executing sub or eval. If db_seqp is
non_null, skip CVs that are in the DB package and populate *db_seqp with the cop
sequence number at the point that the DB:: code was entered. (This allows debuggers
to eval in the scope of the breakpoint rather than in the scope of the debugger itself.)

Cv* find_runcv(U32 *db_seqp)

Uses strlen to get the length of name, then calls get_cvn_flags.
NOTE: the perl_ form of this function is deprecated.
Cv* get_cv(const char* name, 132 flags)

Returns the CV of the specified Perl subroutine. flags are passed to
gv_Tetchpvn_flags. If GV_ADD is set and the Perl subroutine does not exist then it
will be declared (which has the same effect as saying sub name;). If GV_ADD is not
set and the subroutine does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

Cv* get_cvn_flags(const char* name, STRLEN len,
132 flags)

xsubpp variables and internal functions

ax

CLASS

dAX

dAXMARK

Variable which is setup by xsubpp to indicate the stack base offset, used by the ST,
XSprePUSH and XSRETURN macros. The dMARK macro must be called prior to setup
the MARK variable.

132 ax

Variable which is setup by xsubpp to indicate the class name for a C++ XS
constructor. This is always a char*. See THIS.

char* CLASS

Sets up the ax variable. This is usually handled automatically by xsubpp by calling
dXSARGS.

dAX;

http://perldoc.perl.org

Page 21

O Perl

Perl version 5.26.1 documentation - perlapi

dITEMS

dUNDERBAR

dXSARGS

dXxsI32

items

RETVAL

ST

THIS

Sets up the ax variable and stack marker variable mark. This is usually handled
automatically by xsubpp by calling dXSARGS.

dAXMARK;

Sets up the items variable. This is usually handled automatically by xsubpp by
calling dXSARGS.

dITEMS;

Sets up any variable needed by the UNDERBAR macro. It used to define padoff_du,
but it is currently a noop. However, it is strongly advised to still use it for ensuring past
and future compatibility.

dUNDERBAR;

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. Sets up the ax
and items variables by calling dAX and dITEMS. This is usually handled automatically
by xsubpp.

dXSARGS;

Sets up the ix variable for an XSUB which has aliases. This is usually handled
automatically by xsubpp.

dXS132;

Variable which is setup by xsubpp to indicate the number of items on the stack. See
"Variable-length Parameter Lists" in perlxs.

132 items

Variable which is setup by xsubpp to indicate which of an XSUB's aliases was used to
invoke it. See "The ALIAS: Keyword" in perlxs.

132 ix

Variable which is setup by xsubpp to hold the return value for an XSUB. This is
always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.

(whatever) RETVAL

Used to access elements on the XSUB's stack.
SvV* ST(int ix)

Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is

http://perldoc.perl.org

Page 22

@ Pefl Perl version 5.26.1 documentation - perlapi

always the proper type for the C++ object. See CLASS and "Using XS With C++" in
perlxs.

(whatever) THIS

UNDERBAR
The SV* corresponding to the $_ variable. Works even if there is a lexical $_ in scope.

XS
Macro to declare an XSUB and its C parameter list. This is handled by xsubpp. It is
the same as using the more explicit XS_EXTERNAL macro.

XS_EXTERNAL
Macro to declare an XSUB and its C parameter list explicitly exporting the symbols.

XS_INTERNAL
Macro to declare an XSUB and its C parameter list without exporting the symbols. This
is handled by xsubpp and generally preferable over exporting the XSUB symbols
unnecessarily.
Debugging Utilities
dump_all

Dumps the entire optree of the current program starting at PL_main_root to STDERR.
Also dumps the optrees for all visible subroutines in PL_defstash.

void dump_all(Q

dump_packsubs
Dumps the optrees for all visible subroutines in stash.
void dump_packsubs(const HV* stash)

op_class
Given an op, determine what type of struct it has been allocated as. Returns one of the
OPclass enums, such as OPclass_LISTOP.
OPclass op_class(const OP *0)
op_dump
Dumps the optree starting at OP o to STDERR.
void op_dump(const OP *0)
sv_dump

Dumps the contents of an SV to the STDERR filehandle.
For an example of its output, see Devel::Peek.
void sv_dump(SV* sv)

Display and Dump functions
pv_display
Similar to
pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);

except that an additional "\0" will be appended to the string when len > cur and pv|[cur]

http://perldoc.perl.org Page 23

@ Pefl Perl version 5.26.1 documentation - perlapi
is "\0".
Note that the final string may be up to 7 chars longer than pvlim.

char* pv_display(SV *dsv, const char *pv, STRLEN cur,
STRLEN len, STRLEN pvlim)

pv_escape

Escapes at most the first count chars of pv and puts the results into dsv such that
the size of the escaped string will not exceed max chars and will not contain any
incomplete escape sequences. The number of bytes escaped will be returned in the
STRLEN *escaped parameter if it is not null. When the dsv parameter is null no
escaping actually occurs, but the number of bytes that would be escaped were it not
null will be calculated.

If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes in the string will
also be escaped.

Normally the SV will be cleared before the escaped string is prepared, but when
PERL_PV_ESCAPE_NOCLEAR is set this will not occur.

If PERL_PV_ESCAPE_UNI is set then the input string is treated as UTF-8 if
PERL_PV_ESCAPE_UNI_DETECT is set then the input string is scanned using
is_utf8 string() to determine if it is UTF-8.

If PERL_PV_ESCAPE_ALL is set then all input chars will be output using \x01F1 style
escapes, otherwise if PERL_PV_ESCAPE_NONASCI I is set, only non-ASCII chars will
be escaped using this style; otherwise, only chars above 255 will be so escaped; other
non printable chars will use octal or common escaped patterns like \n. Otherwise, if
PERL_PV_ESCAPE_NOBACKSLASH then all chars below 255 will be treated as
printable and will be output as literals.

If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of the string will be
escaped, regardless of max. If the output is to be in hex, then it will be returned as a
plain hex sequence. Thus the output will either be a single char, an octal escape
sequence, a special escape like \n or a hex value.

If PERL_PV_ESCAPE_RE is set then the escape char used will be a ""%"* and not a
"\\"". This is because regexes very often contain backslashed sequences, whereas
"% is not a particularly common character in patterns.

Returns a pointer to the escaped text as held by dsv.

char* pv_escape(SV *dsv, char const * const str,
const STRLEN count, const STRLEN max,
STRLEN * const escaped,
const U32 flags)

pv_pretty
Converts a string into something presentable, handling escaping via pv_escape()
and supporting quoting and ellipses.

If the PERL_PV_PRETTY_QUOTE flag is set then the result will be double quoted with
any double quotes in the string escaped. Otherwise if the PERL_PV_PRETTY_LTGT
flag is set then the result be wrapped in angle brackets.

If the PERL_PV_PRETTY_ELLIPSES flag is set and not all characters in string were
output then an ellipsis - - . will be appended to the string. Note that this happens
AFTER it has been quoted.

If start_color is non-null then it will be inserted after the opening quote (if there is
one) but before the escaped text. If end_color is non-null then it will be inserted after
the escaped text but before any quotes or ellipses.

http://perldoc.perl.org Page 24

O Perl

Perl version 5.26.1 documentation - perlapi

Returns a pointer to the prettified text as held by dsv.

char* pv_pretty(SV *dsv, char const * const str,
const STRLEN count, const STRLEN max,
char const * const start_color,
char const * const end_color,
const U32 flags)

Embedding Functions

cv_clone

cvV_name

cv_undef

find_rundefsv

Clone a CV, making a lexical closure. proto supplies the prototype of the function: its
code, pad structure, and other attributes. The prototype is combined with a capture of
outer lexicals to which the code refers, which are taken from the currently-executing
instance of the immediately surrounding code.

CV * cv_clone(CV *proto)

Returns an SV containing the name of the CV, mainly for use in error reporting. The
CV may actually be a GV instead, in which case the returned SV holds the GV's name.
Anything other than a GV or CV is treated as a string already holding the sub name,
but this could change in the future.

An SV may be passed as a second argument. If so, the name will be assigned to it and
it will be returned. Otherwise the returned SV will be a new mortal.

If Flags has the CV_NAME_NOTQUAL bit set, then the package name will not be
included. If the first argument is neither a CV nor a GV, this flag is ignored (subject to
change).

SV * cv_name(CV *cv, SV *sv, U32 flags)

Clear out all the active components of a CV. This can happen either by an explicit
undef &Foo, or by the reference count going to zero. In the former case, we keep the
CvOUTSIDE pointer, so that any anonymous children can still follow the full lexical
scope chain.

void cv_undef(CV* cv)

Returns the global variable $_.
SV * find_rundefsv()

find_rundefsvoffset

DEPRECATED! It is planned to remove this function from a future release of Perl. Do
not use it for new code; remove it from existing code.

Until the lexical $_ feature was removed, this function would find the position of the
lexical $_ in the pad of the currently-executing function and returns the offset in the
current pad, or NOT__IN_PAD.

Now it always returns NOT__IN_PAD.
NOTE: the perl_ form of this function is deprecated.
PADOFFSET find_rundefsvoffset()

http://perldoc.perl.org

Page 25

@ Pefl Perl version 5.26.1 documentation - perlapi

intro_my
"Introduce” my variables to visible status. This is called during parsing at the end of
each statement to make lexical variables visible to subsequent statements.
U32 intro_my(Q
load_module

Loads the module whose name is pointed to by the string part of name. Note that the
actual module name, not its filename, should be given. Eg, "Foo::Bar" instead of
"Foo/Bar.pm". ver, if specified and not NULL, provides version semantics similar to
use Foo::Bar VERSION. The optional trailing arguments can be used to specify
arguments to the module's import() method, similar to use Foo::Bar VERSION
LIST; their precise handling depends on the flags. The flags argument is a
bitwise-ORed collection of any of PERL_LOADMOD_DENY, PERL_LOADMOD_NOIMPORT
, or PERL_LOADMOD_ IMPORT_OPS (or O for no flags).

If PERL_LOADMOD_NOIMPORT is set, the module is loaded as if with an empty import
list, as in use Foo::Bar (); this is the only circumstance in which the trailing
optional arguments may be omitted entirely. Otherwise, if
PERL_LOADMOD_IMPORT_OPS is set, the trailing arguments must consist of exactly
one OP*, containing the op tree that produces the relevant import arguments.
Otherwise, the trailing arguments must all be SV* values that will be used as import
arguments; and the list must be terminated with (SV*) NULL. If neither
PERL_LOADMOD_NOIMPORT nor PERL_LOADMOD_IMPORT_OPS is set, the trailing
NULL pointer is needed even if no import arguments are desired. The reference count
for each specified SV* argument is decremented. In addition, the name argument is
modified.

If PERL_LOADMOD_DENY is set, the module is loaded as if with no rather than use.
void load_module(U32 flags, SV* name, SV* ver, ...)

newPADNAMELIST
NOTE: this function is experimental and may change or be removed without notice.
Creates a new pad name list. max is the highest index for which space is allocated.
PADNAMELIST * newPADNAMELIST(size_t max)

newPADNAMEouter
NOTE: this function is experimental and may change or be removed without notice.

Constructs and returns a new pad name. Only use this function for names that refer to
outer lexicals. (See also newPADNAMEpvn.) outer is the outer pad name that this
one mirrors. The returned pad name has the PADNAMEt_OUTER flag already set.

PADNAME * newPADNAMEouter (PADNAME *outer)

newPADNAMEpvn
NOTE: this function is experimental and may change or be removed without notice.

Constructs and returns a new pad name. s must be a UTF-8 string. Do not use this for
pad names that point to outer lexicals. See newPADNAMEouter.

PADNAME * newPADNAMEpvn(const char *s, STRLEN len)

nothreadhook
Stub that provides thread hook for perl_destruct when there are no threads.
int nothreadhook()

http://perldoc.perl.org Page 26

O Perl

Perl version 5.26.1 documentation - perlapi

pad_add_anon

Allocates a place in the currently-compiling pad (via pad_alloc) for an anonymous
function that is lexically scoped inside the currently-compiling function. The function
func is linked into the pad, and its CvOUTSIDE link to the outer scope is weakened to
avoid a reference loop.

One reference count is stolen, so you may need to do SYVREFCNT_inc(func).

optype should be an opcode indicating the type of operation that the pad entry is to
support. This doesn't affect operational semantics, but is used for debugging.

PADOFFSET pad_add_anon(CV *func, 132 optype)

pad_add_name_pv

Exactly like pad_add_name_pvn, but takes a nul-terminated string instead of a
string/length pair.

PADOFFSET pad_add_name_pv(const char *name, U32 flags,
HV *typestash, HV *ourstash)

pad_add_name_pvn

Allocates a place in the currently-compiling pad for a named lexical variable. Stores
the name and other metadata in the name part of the pad, and makes preparations to
manage the variable's lexical scoping. Returns the offset of the allocated pad slot.

namepv/name len specify the variable's name, including leading sigil. If typestash is
non-null, the name is for a typed lexical, and this identifies the type. If ourstash is
non-null, it's a lexical reference to a package variable, and this identifies the package.
The following flags can be OR'ed together:

padadd_OUR redundantly specifies if it"s a package var
padadd_STATE variable will retain value persistently
padadd NO DUP_CHECK skip check for lexical shadowing

PADOFFSET pad_add_name_pvn(const char *namepv,
STRLEN namelen, U32 flags,
HV *typestash, HV *ourstash)

pad_add_name_sv

pad_alloc

Exactly like pad_add_name_pvn, but takes the name string in the form of an SV
instead of a string/length pair.

PADOFFSET pad_add_name_sv(SV *name, U32 flags,
HV *typestash, HV *ourstash)

NOTE: this function is experimental and may change or be removed without notice.

Allocates a place in the currently-compiling pad, returning the offset of the allocated
pad slot. No name is initially attached to the pad slot. tmptype is a set of flags
indicating the kind of pad entry required, which will be set in the value SV for the
allocated pad entry:

SVs_ PADMY named lexical variable ("my", "our', "state')
SVs_PADTMP unnamed temporary store
SVF_READONLY constant shared between recursion levels

SVT_READONLY has been supported here only since perl 5.20. To work with earlier
versions as well, use SVFf_READONLY | SVs_PADTMP. SVF_READONLY does not cause

http://perldoc.perl.org

Page 27

O Perl

Perl version 5.26.1 documentation - perlapi

the SV in the pad slot to be marked read-only, but simply tells pad_al loc that it will
be made read-only (by the caller), or at least should be treated as such.

optype should be an opcode indicating the type of operation that the pad entry is to
support. This doesn't affect operational semantics, but is used for debugging.

PADOFFSET pad_alloc(132 optype, U32 tmptype)

pad_findmy_pv

Exactly like pad_findmy_pvn, but takes a nul-terminated string instead of a
string/length pair.

PADOFFSET pad_findmy pv(const char *name, U32 flags)

pad_findmy_pvn

Given the name of a lexical variable, find its position in the currently-compiling pad.
namepv/name len specify the variable's name, including leading sigil. flags is
reserved and must be zero. If it is not in the current pad but appears in the pad of any
lexically enclosing scope, then a pseudo-entry for it is added in the current pad.
Returns the offset in the current pad, or NOT__IN_PAD if no such lexical is in scope.

PADOFFSET pad_findmy_ pvn(const char *namepv,
STRLEN namelen, U32 flags)

pad_findmy_sv

Exactly like pad_findmy_pvn, but takes the name string in the form of an SV instead of
a string/length pair.

PADOFFSET pad_findmy sv(SV *name, U32 flags)

padnamelist_fetch

NOTE: this function is experimental and may change or be removed without notice.
Fetches the pad name from the given index.

PADNAME * padnamelist_fetch(PADNAMELIST *pnl,
SSize_t key)

padnamelist_store

pad_setsv

pad_sv

NOTE: this function is experimental and may change or be removed without notice.

Stores the pad name (which may be null) at the given index, freeing any existing pad
name in that slot.

PADNAME ** padnamelist_store(PADNAMELIST *pnl,
SSize_t key, PADNAME *val)

Set the value at offset po in the current (compiling or executing) pad. Use the macro
PAD_SETSV() rather than calling this function directly.

void pad_setsv(PADOFFSET po, SV *sv)

Get the value at offset po in the current (compiling or executing) pad. Use macro
PAD_SV instead of calling this function directly.

SV * pad_sv(PADOFFSET po)

http://perldoc.perl.org

Page 28

@ Pefl Perl version 5.26.1 documentation - perlapi

pad_tidy

NOTE: this function is experimental and may change or be removed without notice.

Tidy up a pad at the end of compilation of the code to which it belongs. Jobs
performed here are: remove most stuff from the pads of anonsub prototypes; give it a
@ ; mark temporaries as such. type indicates the kind of subroutine:

padtidy_ SUB ordinary subroutine
padtidy SUBCLONE prototype for lexical closure
padtidy FORMAT format

void pad_tidy(padtidy_type type)

perl_alloc
Allocates a new Perl interpreter. See perlembed.
PerlInterpreter* perl_alloc(Q)

perl_construct
Initializes a new Perl interpreter. See perlembed.
void perl_construct(PerlInterpreter *my_ perl)

perl_destruct
Shuts down a Perl interpreter. See perlembed.
int perl_destruct(PerllInterpreter *my perl)

perl_free
Releases a Perl interpreter. See perlembed.
void perl_free(PerllInterpreter *my_perl)
perl_parse
Tells a Perl interpreter to parse a Perl script. See perlembed.
int perl_parse(Perlinterpreter *my_perl,
XSINIT_t xsinit, int argc,
char** argv, char** env)
perl_run
Tells a Perl interpreter to run. See perlembed.
int perl_run(PerlInterpreter *my_perl)
require_pv

Tells Perl to require the file named by the string argument. It is analogous to the Perl
code eval "require "$file"". It's even implemented that way; consider using
load_module instead.

NOTE: the perl_ form of this function is deprecated.
void require_pv(const char* pv)

Exception Handling (simple) Macros
dXCPT
Set up necessary local variables for exception handling. See "Exception Handling" in

http://perldoc.perl.org Page 29

@ Pefl Perl version 5.26.1 documentation - perlapi

perlguts.
dXCPT;

XCPT_CATCH

Introduces a catch block. See "Exception Handling" in perlguts.

XCPT_RETHROW

Rethrows a previously caught exception. See "Exception Handling" in perlguts.
XCPT_RETHROW;

XCPT_TRY_END
Ends a try block. See "Exception Handling" in perlguts.

XCPT_TRY_START
Starts a try block. See "Exception Handling" in perlguts.

Functions in file scope.c
save_gp
Saves the current GP of gv on the save stack to be restored on scope exit.
If empty is true, replace the GP with a new GP.

If empty is false, mark gv with GVf_INTRO so the next reference assigned is localized,
which is how local *foo = $someref; works.

void save_gp(GV* gv, 132 empty)

Functions in file vutil.c
new_version
Returns a new version object based on the passed in SV:
SV *sv = new_version(SV *ver);

Does not alter the passed in ver SV. See "upg_version" if you want to upgrade the SV.
SV* new_version(SV *ver)

prescan_version

Validate that a given string can be parsed as a version object, but doesn't actually
perform the parsing. Can use either strict or lax validation rules. Can optionally set a
number of hint variables to save the parsing code some time when tokenizing.

const char* prescan_version(const char *s, bool strict,
const char** errstr,
bool *sqv,
int *ssaw_decimal,
int *swidth, bool *salpha)

scan_version

Returns a pointer to the next character after the parsed version string, as well as
upgrading the passed in SV to an RV.
Function must be called with an already existing SV like

sv = newSV(0);

s = scan_version(s, SV *sv, bool qv);

http://perldoc.perl.org Page 30

O Perl

Perl version 5.26.1 documentation - perlapi

upg_version

vemp

vnormal

vnumify

vstringify

vverify

Performs some preprocessing to the string to ensure that it has the correct
characteristics of a version. Flags the object if it contains an underscore (which
denotes this is an alpha version). The boolean qv denotes that the version should be
interpreted as if it had multiple decimals, even if it doesn't.

const char* scan_version(const char *s, SV *rv, bool qv)

In-place upgrade of the supplied SV to a version object.
SV *sv = upg_version(SV *sv, bool qv);

Returns a pointer to the upgraded SV. Set the boolean qv if you want to force this SV
to be interpreted as an "extended" version.

SV* upg_version(SV *ver, bool qv)

Version object aware cmp. Both operands must already have been converted into
version objects.

int vemp(SV *lhv, SV *rhv)

Accepts a version object and returns the normalized string representation. Call like:
sv = vnormal(rv);

NOTE: you can pass either the object directly or the SV contained within the RV.
The SV returned has a refcount of 1.
SV* vnormal (SV *vs)

Accepts a version object and returns the normalized floating point representation. Call
like:

sv = vnumify(rv);

NOTE: you can pass either the object directly or the SV contained within the RV.
The SV returned has a refcount of 1.
SV* vnumify(SV *vs)

In order to maintain maximum compatibility with earlier versions of Perl, this function
will return either the floating point notation or the multiple dotted notation, depending
on whether the original version contained 1 or more dots, respectively.

The SV returned has a refcount of 1.
SV* vstringify(SV *vs)

Validates that the SV contains valid internal structure for a version object. It may be
passed either the version object (RV) or the hash itself (HV). If the structure is valid, it
returns the HV. If the structure is invalid, it returns NULL.

SV *hv = vverify(sv);

http://perldoc.perl.org

Page 31

O Perl

Perl version 5.26.1 documentation - perlapi

"Gimme" Values
G_ARRAY

G_DISCARD

G_EVAL

GIMME

GIMME_V

G_NOARGS

G_SCALAR

G_VOID

Global Variables

Note that it only confirms the bare minimum structure (so as not to get confused by
derived classes which may contain additional hash entries):

* The SV is an HV or a reference to an HV
* The hash contains a "version" key
* The "version" key has a reference to an AV as its value

SV* vverify(SV *vs)

Used to indicate list context. See GIMME_V, GIMME and perlcall.

Indicates that arguments returned from a callback should be discarded. See perlcall.

Used to force a Perl eval wrapper around a callback. See perlcall.

A backward-compatible version of GIMME_V which can only return G_SCALAR or
G_ARRAY; in a void context, it returns G_SCALAR. Deprecated. Use GIMME_V instead.

u32 GIMME

The XSUB-writer's equivalent to Perl's wantarray. Returns G_VOID, G_SCALAR or
G_ARRAY for void, scalar or list context, respectively. See perlcall for a usage example.

U32 GIMME_V

Indicates that no arguments are being sent to a callback. See perlcall.

Used to indicate scalar context. See GIMME_V, GIMME, and perlcall.

Used to indicate void context. See GIMME_V and perlcall.

These variables are global to an entire process. They are shared between all interpreters and all
threads in a process. Any variables not documented here may be changed or removed without notice,
so don't use them! If you feel you really do need to use an unlisted variable, first send email to
perl5-porters@perl.org. It may be that someone there will point out a way to accomplish what you
need without using an internal variable. But if not, you should get a go-ahead to document and then
use the variable.

PL_check

Array, indexed by opcode, of functions that will be called for the "check" phase of
optree building during compilation of Perl code. For most (but not all) types of op, once
the op has been initially built and populated with child ops it will be filtered through the
check function referenced by the appropriate element of this array. The new op is
passed in as the sole argument to the check function, and the check function returns
the completed op. The check function may (as the name suggests) check the op for

http://perldoc.perl.org

Page 32

O Perl

Perl version 5.26.1 documentation - perlapi

validity and signal errors. It may also initialise or modify parts of the ops, or perform
more radical surgery such as adding or removing child ops, or even throw the op away
and return a different op in its place.

This array of function pointers is a convenient place to hook into the compilation
process. An XS module can put its own custom check function in place of any of the
standard ones, to influence the compilation of a particular type of op. However, a
custom check function must never fully replace a standard check function (or even a
custom check function from another module). A module modifying checking must
instead wrap the preexisting check function. A custom check function must be
selective about when to apply its custom behaviour. In the usual case where it decides
not to do anything special with an op, it must chain the preexisting op function. Check
functions are thus linked in a chain, with the core's base checker at the end.

For thread safety, modules should not write directly to this array. Instead, use the
function wrap_op_checker.

PL_keyword_plugin

NOTE: this function is experimental and may change or be removed without notice.

Function pointer, pointing at a function used to handle extended keywords. The
function should be declared as

int keyword_plugin_function(pTHX_
char *keyword_ptr, STRLEN keyword_len,
OP **op_ptr)

The function is called from the tokeniser, whenever a possible keyword is seen.
keyword_ptr points at the word in the parser's input buffer, and keyword_len gives
its length; it is not null-terminated. The function is expected to examine the word, and
possibly other state such as %"H, to decide whether it wants to handle it as an
extended keyword. If it does not, the function should return
KEYWORD_PLUGIN_DECLINE, and the normal parser process will continue.

If the function wants to handle the keyword, it first must parse anything following the
keyword that is part of the syntax introduced by the keyword. See Lexer interface for
details.

When a keyword is being handled, the plugin function must build a tree of OP
structures, representing the code that was parsed. The root of the tree must be stored
in *op_ptr. The function then returns a constant indicating the syntactic role of the
construct that it has parsed: KEYWORD_PLUGIN_STMT if it is a complete statement, or
KEYWORD_PLUGIN_EXPR if it is an expression. Note that a statement construct cannot
be used inside an expression (except via do BLOCK and similar), and an expression is
not a complete statement (it requires at least a terminating semicolon).

When a keyword is handled, the plugin function may also have (compile-time) side
effects. It may modify %"H, define functions, and so on. Typically, if side effects are the
main purpose of a handler, it does not wish to generate any ops to be included in the
normal compilation. In this case it is still required to supply an op tree, but it suffices to
generate a single null op.

That's how the *PL_keyword_plugin function needs to behave overall.
Conventionally, however, one does not completely replace the existing handler
function. Instead, take a copy of PL_keyword_plugin before assigning your own
function pointer to it. Your handler function should look for keywords that it is
interested in and handle those. Where it is not interested, it should call the saved
plugin function, passing on the arguments it received. Thus PL_keyword_plugin
actually points at a chain of handler functions, all of which have an opportunity to
handle keywords, and only the last function in the chain (built into the Perl core) will
normally return KEYWORD_PLUGIN_DECLINE.

http://perldoc.perl.org

Page 33

O Perl

Perl version 5.26.1 documentation - perlapi

GV Functions

A GV is a structure which corresponds to to a Perl typeglob, ie *foo. It is a structure that holds a
pointer to a scalar, an array, a hash etc, corresponding to $foo, @foo, %foo.

GVs are usually found as values in stashes (symbol table hashes) where Perl stores its global

variables.

GVvAV

gv_const_sv

GvCV

gv_fetchmeth

Return the AV from the GV.
AV* GVvAV(GV* gv)

If gv is a typeglob whose subroutine entry is a constant sub eligible for inlining, or gv
is a placeholder reference that would be promoted to such a typeglob, then returns the
value returned by the sub. Otherwise, returns NULL.

SV* gv_const_sv(GV* gv)

Return the CV from the GV.
CV* GvCV(GV* gv)

Like gv_fetchmeth_pvn, but lacks a flags parameter.

Gv* gv_fetchmeth(HV* stash, const char* name,
STRLEN len, 132 level)

gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method on the
stash. In fact in the presence of autoloading this may be the glob for "AUTOLOAD".
In this case the corresponding variable SAUTOLOAD is already setup.

The third parameter of gv_fetchmethod_autoload determines whether
AUTOLOAD lookup is performed if the given method is no