
Perl version 5.26.1 documentation - perl5260delta

Page 1http://perldoc.perl.org

NAME
perl5260delta - what is new for perl v5.26.0

DESCRIPTION
This document describes the differences between the 5.24.0 release and the
 5.26.0 release.

Notice
This release includes three updates with widespread effects:

* "." no longer in @INC

For security reasons, the current directory (".") is no longer included
 by default at the end of
the module search path (@INC). This may have
 widespread implications for the building,
testing and installing of
 modules, and for the execution of scripts. See the section Removal of
the current directory (".") from @INC
 for the full details.

* do may now warn

do now gives a deprecation warning when it fails to load a file which
 it would have loaded had
"." been in @INC.

* In regular expression patterns, a literal left brace "{"
 should be escaped

See Unescaped literal "{" characters in regular expression patterns are no longer permissible
.

Core Enhancements
Lexical subroutines are no longer experimental

Using the lexical_subs feature introduced in v5.18 no longer emits a warning. Existing
 code that
disables the experimental::lexical_subs warning category
 that the feature previously used will
continue to work. The lexical_subs feature has no effect; all Perl code can use lexical
 subroutines,
regardless of what feature declarations are in scope.

Indented Here-documents
This adds a new modifier "~" to here-docs that tells the parser
 that it should look for
/^\s*$DELIM\n/ as the closing delimiter.

These syntaxes are all supported:

 <<~EOF;
 <<~\EOF;
 <<~'EOF';
 <<~"EOF";
 <<~`EOF`;
 <<~ 'EOF';
 <<~ "EOF";
 <<~ `EOF`;

The "~" modifier will strip, from each line in the here-doc, the
 same whitespace that appears before
the delimiter.

Newlines will be copied as-is, and lines that don't include the
 proper beginning whitespace will cause
perl to croak.

For example:

 if (1) {
 print <<~EOF;
 Hello there
 EOF

Perl version 5.26.1 documentation - perl5260delta

Page 2http://perldoc.perl.org

 }

prints "Hello there\n" with no leading whitespace.

New regular expression modifier /xx
Specifying two "x" characters to modify a regular expression pattern
 does everything that a single
one does, but additionally TAB and SPACE
 characters within a bracketed character class are
generally ignored and
 can be added to improve readability, like /[^ A-Z d-f p-x]/xx. Details
are at "/x and /xx" in perlre.

@{^CAPTURE}, %{^CAPTURE}, and %{^CAPTURE_ALL}
@{^CAPTURE} exposes the capture buffers of the last match as an
 array. So $1 is ${^CAPTURE}[0]
. This is a more efficient equivalent
 to code like
substr($matched_string,$-[0],$+[0]-$-[0]), and you don't
 have to keep track of the
$matched_string either. This variable has no
 single character equivalent. Note that, like the other
regex magic variables,
 the contents of this variable is dynamic; if you wish to store it beyond
 the
lifetime of the match you must copy it to another array.

%{^CAPTURE} is equivalent to %+ (i.e., named captures). Other than
 being more self-documenting
there is no difference between the two forms.

%{^CAPTURE_ALL} is equivalent to %- (i.e., all named captures).
 Other than being more
self-documenting there is no difference between the
 two forms.

Declaring a reference to a variable
As an experimental feature, Perl now allows the referencing operator to come
 after my(), state(),
our(), or local(). This syntax must
 be enabled with use feature 'declared_refs'. It is
experimental, and will
 warn by default unless no warnings 'experimental::refaliasing' is
in effect.
 It is intended mainly for use in assignments to references. For example:

 use experimental 'refaliasing', 'declared_refs';
 my \$a = \$b;

See "Assigning to References" in perlref for more details.

Unicode 9.0 is now supported
A list of changes is at http://www.unicode.org/versions/Unicode9.0.0/.
 Modules that are shipped with
core Perl but not maintained by p5p do not
 necessarily support Unicode 9.0. Unicode::Normalize does
work on 9.0.

Use of \p{script} uses the improved Script_Extensions property
Unicode 6.0 introduced an improved form of the Script (sc) property, and
 called it Script_Extensions (
scx). Perl now uses this improved
 version when a property is specified as just \p{script}. This

should make programs more accurate when determining if a character is
 used in a given script, but
there is a slight chance of breakage for
 programs that very specifically needed the old behavior. The
meaning of
 compound forms, like \p{sc=script} are unchanged. See "Scripts" in perlunicode.

Perl can now do default collation in UTF-8 locales on platforms
 that support it
Some platforms natively do a reasonable job of collating and sorting in
 UTF-8 locales. Perl now works
with those. For portability and full
 control, Unicode::Collate is still recommended, but now you may
 not
need to do anything special to get good-enough results, depending on
 your application. See
"Category LC_COLLATE: Collation: Text Comparisons and Sorting" in perllocale.

Better locale collation of strings containing embedded NUL
 characters
In locales that have multi-level character weights, NULs are now
 ignored at the higher priority ones.
There are still some gotchas in
 some strings, though. See "Collation of strings containing embedded

Perl version 5.26.1 documentation - perl5260delta

Page 3http://perldoc.perl.org

NUL characters" in perllocale.

CORE subroutines for hash and array functions callable via
 reference
The hash and array functions in the CORE namespace (keys, each, values, push, pop, shift,
unshift and splice) can now
 be called with ampersand syntax (&CORE::keys(\%hash) and via
reference
 (my $k = \&CORE::keys; $k->(\%hash)). Previously they could only be
 used when
inlined.

New Hash Function For 64-bit Builds
We have switched to a hybrid hash function to better balance
 performance for short and long keys.

For short keys, 16 bytes and under, we use an optimised variant of
 One At A Time Hard, and for
longer keys we use Siphash 1-3. For very
 long keys this is a big improvement in performance. For
shorter keys
 there is a modest improvement.

Security
Removal of the current directory (".") from @INC

The perl binary includes a default set of paths in @INC. Historically
 it has also included the current
directory (".") as the final entry,
 unless run with taint mode enabled (perl -T). While convenient,
this has
 security implications: for example, where a script attempts to load an
 optional module when
its current directory is untrusted (such as /tmp),
 it could load and execute code from under that
directory.

Starting with v5.26, "." is always removed by default, not just under
 tainting. This has major
implications for installing modules and executing
 scripts.

The following new features have been added to help ameliorate these
 issues.

* Configure -Udefault_inc_excludes_dot

There is a new Configure option, default_inc_excludes_dot (enabled
 by default) which
builds a perl executable without "."; unsetting this
 option using -U reverts perl to the old
behaviour. This may fix your
 path issues but will reintroduce all the security concerns, so don't

build a perl executable like this unless you're really confident that
 such issues are not a
concern in your environment.

* PERL_USE_UNSAFE_INC

There is a new environment variable recognised by the perl interpreter.
 If this variable has the
value 1 when the perl interpreter starts up,
 then "." will be automatically appended to @INC
(except under tainting).

This allows you restore the old perl interpreter behaviour on a
 case-by-case basis. But note
that this is intended to be a temporary crutch,
 and this feature will likely be removed in some
future perl version.
 It is currently set by the cpan utility and Test::Harness to
 ease
installation of CPAN modules which have not been updated to handle the
 lack of dot. Once
again, don't use this unless you are sure that this
 will not reintroduce any security concerns.

* A new deprecation warning issued by do.

While it is well-known that use and require use @INC to search
 for the file to load, many
people don't realise that do "file" also
 searches @INC if the file is a relative path. With the
removal of ".",
 a simple do "file.pl" will fail to read in and execute file.pl from
 the
current directory. Since this is commonly expected behaviour, a new
 deprecation warning is
now issued whenever do fails to load a file which
 it otherwise would have found if a dot had
been in @INC.

Here are some things script and module authors may need to do to make
 their software work in the
new regime.

* Script authors

Perl version 5.26.1 documentation - perl5260delta

Page 4http://perldoc.perl.org

If the issue is within your own code (rather than within included
 modules), then you have two
main options. Firstly, if you are confident
 that your script will only be run within a trusted
directory (under which
 you expect to find trusted files and modules), then add "." back into
the
 path; e.g.:

 BEGIN {
 my $dir = "/some/trusted/directory";
 chdir $dir or die "Can't chdir to $dir: $!\n";
 # safe now
 push @INC, '.';
 }

 use "Foo::Bar"; # may load /some/trusted/directory/Foo/Bar.pm
 do "config.pl"; # may load /some/trusted/directory/config.pl

On the other hand, if your script is intended to be run from within
 untrusted directories (such
as /tmp), then your script suddenly failing
 to load files may be indicative of a security issue.
You most likely want
 to replace any relative paths with full paths; for example,

 do "foo_config.pl"

might become

 do "$ENV{HOME}/foo_config.pl"

If you are absolutely certain that you want your script to load and
 execute a file from the
current directory, then use a ./ prefix; for
 example:

 do "./foo_config.pl"

* Installing and using CPAN modules

If you install a CPAN module using an automatic tool like cpan, then
 this tool will itself set the
PERL_USE_UNSAFE_INC environment variable
 while building and testing the module, which
may be sufficient to install
 a distribution which hasn't been updated to be dot-aware. If you
want to
 install such a module manually, then you'll need to replace the
 traditional invocation:

 perl Makefile.PL && make && make test && make install

with something like

 (export PERL_USE_UNSAFE_INC=1; \
 perl Makefile.PL && make && make test && make install)

Note that this only helps build and install an unfixed module. It's
 possible for the tests to pass
(since they were run under PERL_USE_UNSAFE_INC=1), but for the module itself to fail to
perform
 correctly in production. In this case, you may have to temporarily modify
 your script
until a fixed version of the module is released.
 For example:

 use Foo::Bar;
 {
 local @INC = (@INC, '.');
 # assuming read_config() needs '.' in @INC
 $config = Foo::Bar->read_config();
 }

This is only rarely expected to be necessary. Again, if doing this,
 assess the resultant risks
first.

* Module Authors

If you maintain a CPAN distribution, it may need updating to run in
 a dotless environment.

Perl version 5.26.1 documentation - perl5260delta

Page 5http://perldoc.perl.org

Although cpan and other such tools will
 currently set the PERL_USE_UNSAFE_INC during
module build, this is a
 temporary workaround for the set of modules which rely on "." being in
@INC for installation and testing, and this may mask deeper issues. It
 could result in a module
which passes tests and installs, but which
 fails at run time.

During build, test, and install, it will normally be the case that any perl
 processes will be
executing directly within the root directory of the
 untarred distribution, or a known subdirectory
of that, such as t/. It
 may well be that Makefile.PL or t/foo.t will attempt to include
 local
modules and configuration files using their direct relative
 filenames, which will now fail.

However, as described above, automatic tools like cpan will (for now)
 set the
PERL_USE_UNSAFE_INC environment variable, which introduces
 dot during a build.

This makes it likely that your existing build and test code will work, but
 this may mask issues
with your code which only manifest when used after
 install. It is prudent to try and run your
build process with that
 variable explicitly disabled:

 (export PERL_USE_UNSAFE_INC=0; \
 perl Makefile.PL && make && make test && make install)

This is more likely to show up any potential problems with your module's
 build process, or
even with the module itself. Fixing such issues will
 ensure both that your module can again be
installed manually, and that
 it will still build once the PERL_USE_UNSAFE_INC crutch goes
away.

When fixing issues in tests due to the removal of dot from @INC,
 reinsertion of dot into @INC
should be performed with caution, for this
 too may suppress real errors in your runtime code.
You are encouraged
 wherever possible to apply the aforementioned approaches with explicit

absolute/relative paths, or to relocate your needed files into a
 subdirectory and insert that
subdirectory into @INC instead.

If your runtime code has problems under the dotless @INC, then the comments
 above on how
to fix for script authors will mostly apply here too. Bear in
 mind though that it is considered bad
form for a module to globally add a dot to @INC, since it introduces both a security risk and
hides issues of
 accidentally requiring dot in @INC, as explained above.

Escaped colons and relative paths in PATH
On Unix systems, Perl treats any relative paths in the PATH environment
 variable as tainted when
starting a new process. Previously, it was
 allowing a backslash to escape a colon (unlike the OS),
consequently
 allowing relative paths to be considered safe if the PATH was set to
 something like
/\:.. The check has been fixed to treat "." as tainted
 in that example.

New -Di switch is now required for PerlIO debugging output
This is used for debugging of code within PerlIO to avoid recursive
 calls. Previously this output would
be sent to the file specified
 by the PERLIO_DEBUG environment variable if perl wasn't running
 setuid
and the -T or -t switches hadn't been parsed yet.

If perl performed output at a point where it hadn't yet parsed its
 switches this could result in perl
creating or overwriting the file
 named by PERLIO_DEBUG even when the -T switch had been
supplied.

Perl now requires the -Di switch to be present before it will produce
 PerlIO debugging
 output. By
default this is written to stderr, but can optionally
 be redirected to a file by setting the
PERLIO_DEBUG environment
 variable.

If perl is running setuid or the -T switch was supplied, PERLIO_DEBUG is ignored and the debugging
output is sent to stderr as for any other -D switch.

Incompatible Changes

Perl version 5.26.1 documentation - perl5260delta

Page 6http://perldoc.perl.org

Unescaped literal "{" characters in regular expression
 patterns are no longer permissible
You have to now say something like "\{" or "[{]" to specify to
 match a LEFT CURLY BRACKET;
otherwise, it is a fatal pattern compilation
 error. This change will allow future extensions to the
language.

These have been deprecated since v5.16, with a deprecation message
 raised for some uses starting
in v5.22. Unfortunately, the code added
 to raise the message was buggy and failed to warn in some
cases where
 it should have. Therefore, enforcement of this ban for these cases is
 deferred until Perl
5.30, but the code has been fixed to raise a
 default-on deprecation message for them in the
meantime.

Some uses of literal "{" occur in contexts where we do not foresee
 the meaning ever being anything
but the literal, such as the very first
 character in the pattern, or after a "|" meaning alternation. Thus

 qr/{fee|{fie/

matches either of the strings {fee or {fie. To avoid forcing
 unnecessary code changes, these uses
do not need to be escaped, and no
 warning is raised about them, and there are no current plans to
change this.

But it is always correct to escape "{", and the simple rule to
 remember is to always do so.

See Unescaped left brace in regex is illegal here.

scalar(%hash) return signature changed
The value returned for scalar(%hash) will no longer show information about
 the buckets allocated
in the hash. It will simply return the count of used
 keys. It is thus equivalent to 0+keys(%hash).

A form of backward compatibility is provided via Hash::Util::bucket_ratio() which provides

the same behavior as scalar(%hash) provided in Perl 5.24 and earlier.

keys returned from an lvalue subroutine
keys returned from an lvalue subroutine can no longer be assigned
 to in list context.

 sub foo : lvalue { keys(%INC) }
 (foo) = 3; # death
 sub bar : lvalue { keys(@_) }
 (bar) = 3; # also an error

This makes the lvalue sub case consistent with (keys %hash) = ... and (keys @_) = ...,
which are also errors. [perl #128187]

The ${^ENCODING} facility has been removed
The special behaviour associated with assigning a value to this variable
 has been removed. As a
consequence, the encoding pragma's default mode
 is no longer supported. If
 you still need to write
your source code in encodings other than UTF-8, use a
 source filter such as Filter::Encoding on
CPAN or encoding's Filter
 option.

POSIX::tmpnam() has been removed
The fundamentally unsafe tmpnam() interface was deprecated in
 Perl 5.22 and has now been
removed. In its place, you can use,
 for example, the File::Temp interfaces.

require ::Foo::Bar is now illegal.
Formerly, require ::Foo::Bar would try to read /Foo/Bar.pm. Now any
 bareword require which
starts with a double colon dies instead.

Perl version 5.26.1 documentation - perl5260delta

Page 7http://perldoc.perl.org

Literal control character variable names are no longer permissible
A variable name may no longer contain a literal control character under
 any circumstances. These
previously were allowed in single-character
 names on ASCII platforms, but have been deprecated
there since Perl
 5.20. This affects things like $\cT, where \cT is a literal
 control (such as a NAK or
NEGATIVE ACKNOWLEDGE character) in the
 source code.

NBSP is no longer permissible in \N{...}
The name of a character may no longer contain non-breaking spaces. It
 has been deprecated to do
so since Perl 5.22.

Deprecations
String delimiters that aren't stand-alone graphemes are now deprecated

For Perl to eventually allow string delimiters to be Unicode
 grapheme clusters (which look like a single
character, but may be
 a sequence of several ones), we have to stop allowing a single character

delimiter that isn't a grapheme by itself. These are unlikely to exist
 in actual code, as they would
typically display as attached to the
 character in front of them.

\cX that maps to a printable is no longer deprecated
This means we have no plans to remove this feature. It still raises a
 warning, but only if syntax
warnings are enabled. The feature was
 originally intended to be a way to express non-printable
characters that
 don't have a mnemonic (\t and \n are mnemonics for two
 non-printable characters,
but most non-printables don't have a
 mnemonic.) But the feature can be used to specify a few
printable
 characters, though those are more clearly expressed as the printable
 itself. See
http://www.nntp.perl.org/group/perl.perl5.porters/2017/02/msg242944.html.

Performance Enhancements
A hash in boolean context is now sometimes faster, e.g.

 if (!%h) { ... }

This was already special-cased, but some cases were missed (such as grep %$_, @AoH),
and even the ones which weren't have been improved.

* New Faster Hash Function on 64 bit builds

We use a different hash function for short and long keys. This should
 improve performance
and security, especially for long keys.

* readline is faster

Reading from a file line-by-line with readline() or <> should
 now typically be faster due to a
better implementation of the code that
 searches for the next newline character.

Assigning one reference to another, e.g. $ref1 = $ref2 has been
 optimized in some cases.

Remove some exceptions to creating Copy-on-Write strings. The string
 buffer growth
algorithm has been slightly altered so that you're less
 likely to encounter a string which can't
be COWed.

Better optimise array and hash assignment: where an array or hash appears
 in the LHS of a
list assignment, such as (..., @a) = (...);, it's
 likely to be considerably faster,
especially if it involves emptying the
 array/hash. For example, this code runs about a third
faster compared to
 Perl 5.24.0:

 my @a;
 for my $i (1..10_000_000) {
 @a = (1,2,3);
 @a = ();
 }

Perl version 5.26.1 documentation - perl5260delta

Page 8http://perldoc.perl.org

Converting a single-digit string to a number is now substantially faster.

The split builtin is now slightly faster in many cases: in particular
 for the two
specially-handled forms

 my @a = split ...;
 local @a = split ...;

The rather slow implementation for the experimental subroutine signatures
 feature has been
made much faster; it is now comparable in speed with the
 traditional my ($a, $b, @c) =
@_.

Bareword constant strings are now permitted to take part in constant
 folding. They were
originally exempted from constant folding in August 1999,
 during the development of Perl 5.6,
to ensure that use strict "subs"
 would still apply to bareword constants. That has now
been accomplished a
 different way, so barewords, like other constants, now gain the
performance
 benefits of constant folding.

This also means that void-context warnings on constant expressions of
 barewords now report
the folded constant operand, rather than the operation;
 this matches the behaviour for
non-bareword constants.

Modules and Pragmata
Updated Modules and Pragmata

IO::Compress has been upgraded from version 2.069 to 2.074.

Archive::Tar has been upgraded from version 2.04 to 2.24.

arybase has been upgraded from version 0.11 to 0.12.

attributes has been upgraded from version 0.27 to 0.29.

The deprecation message for the :unique and :locked attributes
 now mention that they will
disappear in Perl 5.28.

B has been upgraded from version 1.62 to 1.68.

B::Concise has been upgraded from version 0.996 to 0.999.

Its output is now more descriptive for op_private flags.

B::Debug has been upgraded from version 1.23 to 1.24.

B::Deparse has been upgraded from version 1.37 to 1.40.

B::Xref has been upgraded from version 1.05 to 1.06.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

base has been upgraded from version 2.23 to 2.25.

bignum has been upgraded from version 0.42 to 0.47.

Carp has been upgraded from version 1.40 to 1.42.

charnames has been upgraded from version 1.43 to 1.44.

Compress::Raw::Bzip2 has been upgraded from version 2.069 to 2.074.

Compress::Raw::Zlib has been upgraded from version 2.069 to 2.074.

Config::Perl::V has been upgraded from version 0.25 to 0.28.

CPAN has been upgraded from version 2.11 to 2.18.

Perl version 5.26.1 documentation - perl5260delta

Page 9http://perldoc.perl.org

CPAN::Meta has been upgraded from version 2.150005 to 2.150010.

Data::Dumper has been upgraded from version 2.160 to 2.167.

The XS implementation now supports Deparse.

DB_File has been upgraded from version 1.835 to 1.840.

Devel::Peek has been upgraded from version 1.23 to 1.26.

Devel::PPPort has been upgraded from version 3.32 to 3.35.

Devel::SelfStubber has been upgraded from version 1.05 to 1.06.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

diagnostics has been upgraded from version 1.34 to 1.36.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

Digest has been upgraded from version 1.17 to 1.17_01.

Digest::MD5 has been upgraded from version 2.54 to 2.55.

Digest::SHA has been upgraded from version 5.95 to 5.96.

DynaLoader has been upgraded from version 1.38 to 1.42.

Encode has been upgraded from version 2.80 to 2.88.

encoding has been upgraded from version 2.17 to 2.19.

This module's default mode is no longer supported. It now
 dies when imported, unless the
Filter option is being used.

encoding::warnings has been upgraded from version 0.12 to 0.13.

This module is no longer supported. It emits a warning to
 that effect and then does nothing.

Errno has been upgraded from version 1.25 to 1.28.

It now documents that using %! automatically loads Errno for you.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

ExtUtils::Embed has been upgraded from version 1.33 to 1.34.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

ExtUtils::MakeMaker has been upgraded from version 7.10_01 to 7.24.

ExtUtils::Miniperl has been upgraded from version 1.05 to 1.06.

ExtUtils::ParseXS has been upgraded from version 3.31 to 3.34.

ExtUtils::Typemaps has been upgraded from version 3.31 to 3.34.

feature has been upgraded from version 1.42 to 1.47.

File::Copy has been upgraded from version 2.31 to 2.32.

File::Fetch has been upgraded from version 0.48 to 0.52.

File::Glob has been upgraded from version 1.26 to 1.28.

It now Issues a deprecation message for File::Glob::glob().

File::Spec has been upgraded from version 3.63 to 3.67.

FileHandle has been upgraded from version 2.02 to 2.03.

Perl version 5.26.1 documentation - perl5260delta

Page 10http://perldoc.perl.org

Filter::Simple has been upgraded from version 0.92 to 0.93.

It no longer treats no MyFilter immediately following use MyFilter as
 end-of-file. [perl
#107726]

Getopt::Long has been upgraded from version 2.48 to 2.49.

Getopt::Std has been upgraded from version 1.11 to 1.12.

Hash::Util has been upgraded from version 0.19 to 0.22.

HTTP::Tiny has been upgraded from version 0.056 to 0.070.

Internal 599-series errors now include the redirect history.

I18N::LangTags has been upgraded from version 0.40 to 0.42.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

IO has been upgraded from version 1.36 to 1.38.

IO::Socket::IP has been upgraded from version 0.37 to 0.38.

IPC::Cmd has been upgraded from version 0.92 to 0.96.

IPC::SysV has been upgraded from version 2.06_01 to 2.07.

JSON::PP has been upgraded from version 2.27300 to 2.27400_02.

lib has been upgraded from version 0.63 to 0.64.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

List::Util has been upgraded from version 1.42_02 to 1.46_02.

Locale::Codes has been upgraded from version 3.37 to 3.42.

Locale::Maketext has been upgraded from version 1.26 to 1.28.

Locale::Maketext::Simple has been upgraded from version 0.21 to 0.21_01.

Math::BigInt has been upgraded from version 1.999715 to 1.999806.

Math::BigInt::FastCalc has been upgraded from version 0.40 to 0.5005.

Math::BigRat has been upgraded from version 0.260802 to 0.2611.

Math::Complex has been upgraded from version 1.59 to 1.5901.

Memoize has been upgraded from version 1.03 to 1.03_01.

Module::CoreList has been upgraded from version 5.20170420 to 5.20170530.

Module::Load::Conditional has been upgraded from version 0.64 to 0.68.

Module::Metadata has been upgraded from version 1.000031 to 1.000033.

mro has been upgraded from version 1.18 to 1.20.

Net::Ping has been upgraded from version 2.43 to 2.55.

IPv6 addresses and AF_INET6 sockets are now supported, along with several
 other
enhancements.

NEXT has been upgraded from version 0.65 to 0.67.

Opcode has been upgraded from version 1.34 to 1.39.

open has been upgraded from version 1.10 to 1.11.

Perl version 5.26.1 documentation - perl5260delta

Page 11http://perldoc.perl.org

OS2::Process has been upgraded from version 1.11 to 1.12.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

overload has been upgraded from version 1.26 to 1.28.

Its compilation speed has been improved slightly.

parent has been upgraded from version 0.234 to 0.236.

perl5db.pl has been upgraded from version 1.50 to 1.51.

It now ignores /dev/tty on non-Unix systems. [perl #113960]

Perl::OSType has been upgraded from version 1.009 to 1.010.

perlfaq has been upgraded from version 5.021010 to 5.021011.

PerlIO has been upgraded from version 1.09 to 1.10.

PerlIO::encoding has been upgraded from version 0.24 to 0.25.

PerlIO::scalar has been upgraded from version 0.24 to 0.26.

Pod::Checker has been upgraded from version 1.60 to 1.73.

Pod::Functions has been upgraded from version 1.10 to 1.11.

Pod::Html has been upgraded from version 1.22 to 1.2202.

Pod::Perldoc has been upgraded from version 3.25_02 to 3.28.

Pod::Simple has been upgraded from version 3.32 to 3.35.

Pod::Usage has been upgraded from version 1.68 to 1.69.

POSIX has been upgraded from version 1.65 to 1.76.

This remedies several defects in making its symbols exportable. [perl #127821]

The POSIX::tmpnam() interface has been removed,
 see POSIX::tmpnam() has been
removed.

The following deprecated functions have been removed:

 POSIX::isalnum
 POSIX::isalpha
 POSIX::iscntrl
 POSIX::isdigit
 POSIX::isgraph
 POSIX::islower
 POSIX::isprint
 POSIX::ispunct
 POSIX::isspace
 POSIX::isupper
 POSIX::isxdigit
 POSIX::tolower
 POSIX::toupper

Trying to import POSIX subs that have no real implementations
 (like POSIX::atend()) now
fails at import time, instead of
 waiting until runtime.

re has been upgraded from version 0.32 to 0.34

This adds support for the new /xx
 regular expression pattern modifier, and a change to the
use re 'strict' experimental feature. When re
 'strict' is enabled, a warning now
will be generated for all
 unescaped uses of the two characters "}" and "]" in regular

Perl version 5.26.1 documentation - perl5260delta

Page 12http://perldoc.perl.org

expression patterns (outside bracketed character classes) that are taken
 literally. This brings
them more in line with the ")" character which
 is always a metacharacter unless escaped.
Being a metacharacter only
 sometimes, depending on an action at a distance, can lead to
silently
 having the pattern mean something quite different than was intended,
 which the re
'strict' mode is intended to minimize.

Safe has been upgraded from version 2.39 to 2.40.

Scalar::Util has been upgraded from version 1.42_02 to 1.46_02.

Storable has been upgraded from version 2.56 to 2.62.

Fixes [perl #130098].

Symbol has been upgraded from version 1.07 to 1.08.

Sys::Syslog has been upgraded from version 0.33 to 0.35.

Term::ANSIColor has been upgraded from version 4.04 to 4.06.

Term::ReadLine has been upgraded from version 1.15 to 1.16.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

Test has been upgraded from version 1.28 to 1.30.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

Test::Harness has been upgraded from version 3.36 to 3.38.

Test::Simple has been upgraded from version 1.001014 to 1.302073.

Thread::Queue has been upgraded from version 3.09 to 3.12.

Thread::Semaphore has been upgraded from 2.12 to 2.13.

Added the down_timed method.

threads has been upgraded from version 2.07 to 2.15.

threads::shared has been upgraded from version 1.51 to 1.56.

Tie::Hash::NamedCapture has been upgraded from version 0.09 to 0.10.

Time::HiRes has been upgraded from version 1.9733 to 1.9741.

It now builds on systems with C++11 compilers (such as G++ 6 and Clang++
 3.9).

Now uses clockid_t.

Time::Local has been upgraded from version 1.2300 to 1.25.

Unicode::Collate has been upgraded from version 1.14 to 1.19.

Unicode::UCD has been upgraded from version 0.64 to 0.68.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

version has been upgraded from version 0.9916 to 0.9917.

VMS::DCLsym has been upgraded from version 1.06 to 1.08.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

warnings has been upgraded from version 1.36 to 1.37.

XS::Typemap has been upgraded from version 0.14 to 0.15.

XSLoader has been upgraded from version 0.21 to 0.27.

Perl version 5.26.1 documentation - perl5260delta

Page 13http://perldoc.perl.org

Fixed a security hole in which binary files could be loaded from a path
 outside of @INC.

It now uses 3-arg open() instead of 2-arg open(). [perl #130122]

Documentation
New Documentation
perldeprecation

This file documents all upcoming deprecations, and some of the deprecations
 which already have
been removed. The purpose of this documentation is
 two-fold: document what will disappear, and by
which version, and serve
 as a guide for people dealing with code which has features that no longer

work after an upgrade of their perl.

Changes to Existing Documentation
We have attempted to update the documentation to reflect the changes
 listed in this document. If you
find any we have missed, send email to perlbug@perl.org.

Additionally, all references to Usenet have been removed, and the
 following selected changes have
been made:

perlfunc

Removed obsolete text about defined()
 on aggregates that should have been deleted
earlier, when the feature
 was removed.

Corrected documentation of eval(),
 and evalbytes().

Clarified documentation of seek(), tell() and sysseek()
 emphasizing that positions are
in bytes and not characters. [perl #128607]

Clarified documentation of sort() concerning
 the variables $a and $b.

In split() noted that certain pattern modifiers are
 legal, and added a caution about its use
in Perls before v5.11.

Removed obsolete documentation of study(), noting
 that it is now a no-op.

Noted that vec() doesn't work well when the string
 contains characters whose code points
are above 255.

perlguts

Added advice on formatted printing of operands of Size_t and SSize_t

perlhack

Clarify what editor tab stop rules to use, and note that we are
 migrating away from using tabs,
replacing them with sequences of SPACE
 characters.

perlhacktips

Give another reason to use cBOOL to cast an expression to boolean.

Note that the macros TRUE and FALSE are available to express
 boolean values.

perlinterp

perlinterp has been expanded to give a more detailed example of how to
 hunt around in the
parser for how a given operator is handled.

perllocale

Some locales aren't compatible with Perl. Note that these can cause
 core dumps.

Perl version 5.26.1 documentation - perl5260delta

Page 14http://perldoc.perl.org

perlmod

Various clarifications have been added.

perlmodlib

Updated the site mirror list.

perlobj

Added a section on calling methods using their fully qualified names.

Do not discourage manual @ISA.

perlootut

Mention Moo more.

perlop

Note that white space must be used for quoting operators if the
 delimiter is a word character (
i.e., matches \w).

Clarify that in regular expression patterns delimited by single quotes,
 no variable interpolation
is done.

perlre

The first part was extensively rewritten to incorporate various basic
 points, that in earlier
versions were mentioned in sort of an appendix
 on Version 8 regular expressions.

Note that it is common to have the /x modifier and forget that this
 means that "#" has to be
escaped.

perlretut

Add introductory material.

Note that a metacharacter occurring in a context where it can't mean
 that, silently loses its
meta-ness and matches literally. use re 'strict' can catch some of these.

perlunicode

Corrected the text about Unicode BYTE ORDER MARK handling.

Updated the text to correspond with changes in Unicode UTS#18, concerning
 regular
expressions, and Perl compatibility with what it says.

perlvar

Document @ISA. It was documented in other places, but not in perlvar.

Diagnostics
New Diagnostics
New Errors

A signature parameter must start with '$', '@' or '%'

Bareword in require contains "%s"

Bareword in require maps to empty filename

Bareword in require maps to disallowed filename "%s"

Bareword in require must not start with a double-colon: "%s"

%s: command not found

(A) You've accidentally run your script through bash or another shell
 instead of Perl. Check

Perl version 5.26.1 documentation - perl5260delta

Page 15http://perldoc.perl.org

the #! line, or manually feed your script into
 Perl yourself. The #! line at the top of your file
could look like:

 #!/usr/bin/perl

%s: command not found: %s

(A) You've accidentally run your script through zsh or another shell
 instead of Perl. Check the
#! line, or manually feed your script into
 Perl yourself. The #! line at the top of your file could
look like:

 #!/usr/bin/perl

The experimental declared_refs feature is not enabled

(F) To declare references to variables, as in my \%x, you must first enable
 the feature:

 no warnings "experimental::declared_refs";
 use feature "declared_refs";

See Declaring a reference to a variable.

Illegal character following sigil in a subroutine signature

Indentation on line %d of here-doc doesn't match delimiter

Infinite recursion via empty pattern.

Using the empty pattern (which re-executes the last successfully-matched
 pattern) inside a
code block in another regex, as in /(?{ s!!new! })/, has
 always previously yielded a
segfault. It now produces this error.

Malformed UTF-8 string in "%s"

Multiple slurpy parameters not allowed

'#' not allowed immediately following a sigil in a subroutine signature

panic: unknown OA_*: %x

Unescaped left brace in regex is illegal here

Unescaped left braces are now illegal in some contexts in regular expression
 patterns. In
other contexts, they are still just deprecated; they will
 be illegal in Perl 5.30.

Version control conflict marker

(F) The parser found a line starting with <<<<<<<, >>>>>>>, or =======. These may be left
by a
 version control system to mark conflicts after a failed merge operation.

New Warnings

Can't determine class of operator %s, assuming BASEOP

Declaring references is experimental

(S experimental::declared_refs) This warning is emitted if you use a reference
 constructor on
the right-hand side of my(), state(), our(), or local(). Simply suppress the warning if
you want to use the feature, but
 know that in doing so you are taking the risk of using an
experimental feature
 which may change or be removed in a future Perl version:

 no warnings "experimental::declared_refs";
 use feature "declared_refs";
 $fooref = my \$foo;

See Declaring a reference to a variable.

Perl version 5.26.1 documentation - perl5260delta

Page 16http://perldoc.perl.org

do "%s" failed, '.' is no longer in @INC

Since "." is now removed from @INC by default, do will now trigger a warning recommending
to fix the do statement.

File::Glob::glob() will disappear in perl 5.30. Use File::Glob::bsd_glob()
instead.

Unescaped literal '%c' in regex; marked by <-- HERE in m/%s/

Use of unassigned code point or non-standalone grapheme for a delimiter will be a fatal error
starting in Perl 5.30

See Deprecations

Changes to Existing Diagnostics
When a require fails, we now do not provide @INC when the require
 is for a file instead of
a module.

When @INC is not scanned for a require call, we no longer display @INC to avoid confusion.

Attribute "locked" is deprecated, and will disappear in Perl 5.28

This existing warning has had the and will disappear text added in this
 release.

Attribute "unique" is deprecated, and will disappear in Perl 5.28

This existing warning has had the and will disappear text added in this
 release.

Calling POSIX::%s() is deprecated

This warning has been removed, as the deprecated functions have been
 removed from
POSIX.

Constants from lexical variables potentially modified elsewhere are deprecated. This will not
be allowed in Perl 5.32

This existing warning has had the this will not be allowed text added
 in this release.

Deprecated use of my() in false conditional. This will be a fatal error in Perl 5.30

This existing warning has had the this will be a fatal error text added
 in this release.

dump() better written as CORE::dump(). dump() will no longer be available in Perl 5.30

This existing warning has had the no longer be available text added in
 this release.

Experimental %s on scalar is now forbidden

This message is now followed by more helpful text. [perl #127976]

Experimental "%s" subs not enabled

This warning was been removed, as lexical subs are no longer experimental.

Having more than one /%c regexp modifier is deprecated

This deprecation warning has been removed, since /xx now has a new
 meaning.

%s() is deprecated on :utf8 handles. This will be a fatal error in Perl 5.30 .

where "%s" is one of sysread, recv, syswrite, or send.

This existing warning has had the this will be a fatal error text added
 in this release.

This warning is now enabled by default, as all deprecated category
 warnings should be.

$* is no longer supported. Its use will be fatal in Perl 5.30

This existing warning has had the its use will be fatal text added in
 this release.

Perl version 5.26.1 documentation - perl5260delta

Page 17http://perldoc.perl.org

$# is no longer supported. Its use will be fatal in Perl 5.30

This existing warning has had the its use will be fatal text added in
 this release.

Malformed UTF-8 character%s

Details as to the exact problem have been added at the end of this
 message

Missing or undefined argument to %s

This warning used to warn about require, even if it was actually do
 which being executed. It
now gets the operation name right.

NO-BREAK SPACE in a charnames alias definition is deprecated

This warning has been removed as the behavior is now an error.

Odd name/value argument for subroutine '%s'

This warning now includes the name of the offending subroutine.

Opening dirhandle %s also as a file. This will be a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added
 in this release.

Opening filehandle %s also as a directory. This will be a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added
 in this release.

panic: ck_split, type=%u

panic: pp_split, pm=%p, s=%p

These panic errors have been removed.

Passing malformed UTF-8 to "%s" is deprecated

This warning has been changed to the fatal Malformed UTF-8 string in "%s"

Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef. This will be
fatal in Perl 5.28

This existing warning has had the this will be fatal text added in
 this release.

${^ENCODING} is no longer supported. Its use will be fatal in Perl 5.28

This warning used to be: "Setting ${^ENCODING} is deprecated".

The special action of the variable ${^ENCODING} was formerly used to
 implement the
encoding pragma. As of Perl 5.26, rather than being
 deprecated, assigning to this variable
now has no effect except to issue
 the warning.

Too few arguments for subroutine '%s'

This warning now includes the name of the offending subroutine.

Too many arguments for subroutine '%s'

This warning now includes the name of the offending subroutine.

Unescaped left brace in regex is deprecated here (and will be fatal in Perl 5.30), passed
through in regex; marked by <-- HERE in m/%s/

This existing warning has had the here (and will be fatal...) text
 added in this release.

Unknown charname '' is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in
 this release.

Use of bare << to mean <<"" is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in
 this release.

Perl version 5.26.1 documentation - perl5260delta

Page 18http://perldoc.perl.org

Use of code point 0x%s is deprecated; the permissible max is 0x%s. This will be fatal in Perl
5.28

This existing warning has had the this will be fatal text added in
 this release.

Use of comma-less variable list is deprecated. Its use will be fatal in Perl 5.28

This existing warning has had the its use will be fatal text added in
 this release.

Use of inherited AUTOLOAD for non-method %s() is deprecated. This will be fatal in Perl 5.28

This existing warning has had the this will be fatal text added in
 this release.

Use of strings with code points over 0xFF as arguments to %s operator is deprecated. This
will be a fatal error in Perl 5.28

This existing warning has had the this will be a fatal error text added in
 this release.

Utility Changes
c2ph and pstruct

These old utilities have long since superceded by h2xs, and are
 now gone from the
distribution.

Porting/pod_lib.pl
Removed spurious executable bit.

Account for the possibility of DOS file endings.

Porting/sync-with-cpan
Many improvements.

perf/benchmarks
Tidy file, rename some symbols.

Porting/checkAUTHORS.pl
Replace obscure character range with \w.

t/porting/regen.t
Try to be more helpful when tests fail.

utils/h2xs.PL
Avoid infinite loop for enums.

perlbug
Long lines in the message body are now wrapped at 900 characters, to stay
 well within the
1000-character limit imposed by SMTP mail transfer agents.
 This is particularly likely to be
important for the list of arguments to Configure, which can readily exceed the limit if, for
example, it names
 several non-default installation paths. This change also adds the first unit

tests for perlbug. [perl #128020]

Configuration and Compilation
-Ddefault_inc_excludes_dot has added, and enabled by default.

The dtrace build process has further changes [perl #130108]:

If the -xnolibs is available, use that so a dtrace perl can be
 built within a FreeBSD
jail.

On systems that build a dtrace object file (FreeBSD, Solaris, and
 SystemTap's dtrace
emulation), copy the input objects to a separate
 directory and process them there, and
use those objects in the link,
 since dtrace -G also modifies these objects.

Perl version 5.26.1 documentation - perl5260delta

Page 19http://perldoc.perl.org

Add libelf to the build on FreeBSD 10.x, since dtrace adds
 references to libelf symbols.

Generate a dummy dtrace_main.o if dtrace -G fails to build it. A
 default build on
Solaris generates probes from the unused inline
 functions, while they don't on
FreeBSD, which causes dtrace -G to
 fail.

You can now disable perl's use of the PERL_HASH_SEED and PERL_PERTURB_KEYS
environment variables by configuring perl with -Accflags=NO_PERL_HASH_ENV.

You can now disable perl's use of the PERL_HASH_SEED_DEBUG environment
 variable by
configuring perl with -Accflags=-DNO_PERL_HASH_SEED_DEBUG.

Configure now zeroes out the alignment bytes when calculating the bytes
 for 80-bit NaN and
Inf to make builds more reproducible. [perl #130133]

Since v5.18, for testing purposes we have included support for
 building perl with a variety of
non-standard, and non-recommended
 hash functions. Since we do not recommend the use of
these functions,
 we have removed them and their corresponding build options. Specifically
 this
includes the following build options:

 PERL_HASH_FUNC_SDBM
 PERL_HASH_FUNC_DJB2
 PERL_HASH_FUNC_SUPERFAST
 PERL_HASH_FUNC_MURMUR3
 PERL_HASH_FUNC_ONE_AT_A_TIME
 PERL_HASH_FUNC_ONE_AT_A_TIME_OLD
 PERL_HASH_FUNC_MURMUR_HASH_64A
 PERL_HASH_FUNC_MURMUR_HASH_64B

Remove "Warning: perl appears in your path"

This install warning is more or less obsolete, since most platforms already will have a
/usr/bin/perl or similar provided by the OS.

Reduce verbosity of make install.man

Previously, two progress messages were emitted for each manpage: one by
 installman itself,
and one by the function in install_lib.pl that it calls to
 actually install the file. Disabling the
second of those in each case saves
 over 750 lines of unhelpful output.

Cleanup for clang -Weverything support. [perl #129961]

Configure: signbit scan was assuming too much, stop assuming negative 0.

Various compiler warnings have been silenced.

Several smaller changes have been made to remove impediments to compiling
 under C++11.

Builds using USE_PAD_RESET now work again; this configuration had
 bit-rotted.

A probe for gai_strerror was added to Configure that checks if
 the gai_strerror()
routine is available and can be used to
 translate error codes returned by getaddrinfo()
into human
 readable strings.

Configure now aborts if both -Duselongdouble and -Dusequadmath are
 requested. [perl
#126203]

Fixed a bug in which Configure could append -quadmath to the
 archname even if it was
already present. [perl #128538]

Clang builds with -DPERL_GLOBAL_STRUCT or -DPERL_GLOBAL_STRUCT_PRIVATE have

been fixed (by disabling Thread Safety Analysis for these configurations).

Perl version 5.26.1 documentation - perl5260delta

Page 20http://perldoc.perl.org

make_ext.pl no longer updates a module's pm_to_blib file when no
 files require updates. This
could cause dependencies, perlmain.c
 in particular, to be rebuilt unnecessarily. [perl #126710]

The output of perl -V has been reformatted so that each configuration
 and compile-time
option is now listed one per line, to improve
 readability.

Configure now builds miniperl and generate_uudmap if you
 invoke it with
-Dusecrosscompiler but not -Dtargethost=somehost.
 This means you can supply
your target platform config.sh, generate
 the headers and proceed to build your cross-target
perl. [perl #127234]

Perl built with -Accflags=-DPERL_TRACE_OPS now only dumps the operator
 counts when
the environment variable PERL_TRACE_OPS is set to a
 non-zero integer. This allows make
test to pass on such a build.

When building with GCC 6 and link-time optimization (the -flto option to gcc), Configure
was treating all probed symbols as present on the
 system, regardless of whether they actually
exist. This has been fixed. [perl #128131]

The t/test.pl library is used for internal testing of Perl itself, and
 also copied by several CPAN
modules. Some of those modules must work on
 older versions of Perl, so t/test.pl must in turn
avoid newer Perl
 features. Compatibility with Perl 5.8 was inadvertently removed some time

ago; it has now been restored. [perl #128052]

The build process no longer emits an extra blank line before building each
 "simple" extension
(those with only *.pm and *.pod files).

Testing
Tests were added and changed to reflect the other additions and changes
 in this release.
Furthermore, these substantive changes were made:

A new test script, comp/parser_run.t, has been added that is like comp/parser.t but with test.pl
included so that runperl() and the
 like are available for use.

Tests for locales were erroneously using locales incompatible with Perl.

Some parts of the test suite that try to exhaustively test edge cases in the
 regex
implementation have been restricted to running for a maximum of five
 minutes. On slow
systems they could otherwise take several hours, without
 significantly improving our
understanding of the correctness of the code
 under test.

A new internal facility allows analysing the time taken by the individual
 tests in Perl's own test
suite; see Porting/harness-timer-report.pl.

t/re/regexp_nonull.t has been added to test that the regular expression
 engine can handle
scalars that do not have a null byte just past the end of
 the string.

A new test script, t/op/decl-refs.t, has been added to test the new feature Declaring a
reference to a variable.

A new test script, t/re/keep_tabs.t has been added to contain tests
 where \t characters
should not be expanded into spaces.

A new test script, t/re/anyof.t, has been added to test that the ANYOF nodes
 generated by
bracketed character classes are as expected.

There is now more extensive testing of the Unicode-related API macros
 and functions.

Several of the longer running API test files have been split into
 multiple test files so that they
can be run in parallel.

t/harness now tries really hard not to run tests which are located
 outside of the Perl source

Perl version 5.26.1 documentation - perl5260delta

Page 21http://perldoc.perl.org

tree. [perl #124050]

Prevent debugger tests (lib/perl5db.t) from failing due to the contents
 of
$ENV{PERLDB_OPTS}. [perl #130445]

Platform Support
New Platforms

NetBSD/VAX

Perl now compiles under NetBSD on VAX machines. However, it's not
 possible for that
platform to implement floating-point infinities and
 NaNs compatible with most modern systems,
which implement the IEEE-754
 floating point standard. The hexadecimal floating point (
0x...p[+-]n
 literals, printf %a) is not implemented, either.
 The make test passes 98%
of tests.

Test fixes and minor updates.

Account for lack of inf, nan, and -0.0 support.

Platform-Specific Notes
Darwin

Don't treat -Dprefix=/usr as special: instead require an extra option
-Ddarwin_distribution to produce the same results.

OS X El Capitan doesn't implement the clock_gettime() or clock_getres()
APIs; emulate them as necessary.

Deprecated syscall(2) on macOS 10.12.

EBCDIC

Several tests have been updated to work (or be skipped) on EBCDIC platforms.

HP-UX

The Net::Ping UDP test is now skipped on HP-UX.

Hurd

The hints for Hurd have been improved, enabling malloc wrap and reporting the
 GNU libc
used (previously it was an empty string when reported).

VAX

VAX floating point formats are now supported on NetBSD.

VMS

The path separator for the PERL5LIB and PERLLIB environment entries is
 now a
colon (":") when running under a Unix shell. There is no change when
 running under
DCL (it's still "|").

configure.com now recognizes the VSI-branded C compiler and no longer
 recognizes
the "DEC"-branded C compiler (as there hasn't been such a thing for
 15 or more
years).

Windows

Support for compiling perl on Windows using Microsoft Visual Studio 2015
 (containing
Visual C++ 14.0) has been added.

This version of VC++ includes a completely rewritten C run-time library, some
 of the
changes in which mean that work done to resolve a socket close() bug in
 perl
#120091 and perl #118059 is not workable in its current state with this
 version of
VC++. Therefore, we have effectively reverted that bug fix for
 VS2015 onwards on the

Perl version 5.26.1 documentation - perl5260delta

Page 22http://perldoc.perl.org

basis that being able to build with VS2015 onwards is
 more important than keeping the
bug fix. We may revisit this in the future to
 attempt to fix the bug again in a way that is
compatible with VS2015.

These changes do not affect compilation with GCC or with Visual Studio versions
 up to
and including VS2013, i.e., the bug fix is retained (unchanged) for those
 compilers.

Note that you may experience compatibility problems if you mix a perl built
 with GCC
or VS <= VS2013 with XS modules built with VS2015, or if you mix a
 perl built with
VS2015 with XS modules built with GCC or VS <= VS2013.
 Some incompatibility may
arise because of the bug fix that has been reverted
 for VS2015 builds of perl, but there
may well be incompatibility anyway because
 of the rewritten CRT in VS2015 (e.g., see
discussion at http://stackoverflow.com/questions/30412951).

It now automatically detects GCC versus Visual C and sets the VC version
 number on
Win32.

Linux

Drop support for Linux a.out executable format. Linux has used ELF for
 over twenty years.

OpenBSD 6

OpenBSD 6 still does not support returning pid, gid, or uid with SA_SIGINFO. Make sure to
account for it.

FreeBSD

t/uni/overload.t: Skip hanging test on FreeBSD.

DragonFly BSD

DragonFly BSD now has support for setproctitle(). [perl #130068].

Internal Changes
A new API function sv_setpv_bufsize()
 allows simultaneously setting the
 length and the
allocated size of the buffer in an SV, growing the
 buffer if necessary.

A new API macro SvPVCLEAR() sets its SV
 argument to an empty string,
 like Perl-space $x
= '', but with several optimisations.

Several new macros and functions for dealing with Unicode and
 UTF-8-encoded strings have
been added to the API, as well as some
 changes in the
 functionality of existing functions (see
"Unicode Support" in perlapi for
 more details):

New versions of the API macros like isALPHA_utf8 and toLOWER_utf8
 have been
added, each with the suffix _safe, like isSPACE_utf8_safe. These take an extra

parameter, giving an upper
 limit of how far into the string it is safe to read. Using the
old
 versions could cause attempts to read beyond the end of the input buffer
 if the
UTF-8 is not well-formed, and their use now raises a deprecation
 warning. Details are
at "Character classification" in perlapi.

Macros like isALPHA_utf8 and toLOWER_utf8 now die if they detect
 that their input
UTF-8 is malformed. A deprecation warning had been
 issued since Perl 5.18.

Several new macros for analysing the validity of utf8 sequences. These
 are:

UTF8_GOT_ABOVE_31_BIT UTF8_GOT_CONTINUATION UTF8_GOT_EMPTY
UTF8_GOT_LONG UTF8_GOT_NONCHAR UTF8_GOT_NON_CONTINUATION
UTF8_GOT_OVERFLOW UTF8_GOT_SHORT UTF8_GOT_SUPER
UTF8_GOT_SURROGATE UTF8_IS_INVARIANT UTF8_IS_NONCHAR
UTF8_IS_SUPER UTF8_IS_SURROGATE UVCHR_IS_INVARIANT
isUTF8_CHAR_flags isSTRICT_UTF8_CHAR isC9_STRICT_UTF8_CHAR

Functions that are all extensions of the is_utf8_string_*() functions,
 that apply

Perl version 5.26.1 documentation - perl5260delta

Page 23http://perldoc.perl.org

various restrictions to the UTF-8 recognized as valid:

is_strict_utf8_string, is_strict_utf8_string_loc,
is_strict_utf8_string_loclen,

is_c9strict_utf8_string, is_c9strict_utf8_string_loc,
is_c9strict_utf8_string_loclen,

is_utf8_string_flags, is_utf8_string_loc_flags,
is_utf8_string_loclen_flags,

is_utf8_fixed_width_buf_flags, is_utf8_fixed_width_buf_loc_flags,
is_utf8_fixed_width_buf_loclen_flags.

is_utf8_invariant_string. is_utf8_valid_partial_char.
is_utf8_valid_partial_char_flags.

The functions utf8n_to_uvchr and its
 derivatives have had several changes of
behaviour.

Calling them, while passing a string length of 0 is now asserted against
 in
DEBUGGING builds, and otherwise, returns the Unicode REPLACEMENT

CHARACTER. If you have nothing to decode, you shouldn't call the decode
 function.

They now return the Unicode REPLACEMENT CHARACTER if called with UTF-8
 that
has the overlong malformation and that malformation is allowed by
 the input
parameters. This malformation is where the UTF-8 looks valid
 syntactically, but there
is a shorter sequence that yields the same code
 point. This has been forbidden since
Unicode version 3.1.

They now accept an input
 flag to allow the overflow malformation. This malformation is
when the
 UTF-8 may be syntactically valid, but the code point it represents is
 not
capable of being represented in the word length on the platform.
 What "allowed"
means, in this case, is that the function doesn't return an
 error, and it advances the
parse pointer to beyond the UTF-8 in
 question, but it returns the Unicode
REPLACEMENT CHARACTER as the value
 of the code point (since the real value is
not representable).

They no longer abandon searching for other malformations when the first
 one is
encountered. A call to one of these functions thus can generate
 multiple diagnostics,
instead of just one.

valid_utf8_to_uvchr() has been added
 to the API (although it was
 present in
core earlier). Like utf8_to_uvchr_buf(), but assumes that
 the next character is
well-formed. Use with caution.

A new function, utf8n_to_uvchr_error,
 has been added for
 use by modules that
need to know the details of UTF-8 malformations
 beyond pass/fail. Previously, the only
ways to know why a sequence was
 ill-formed was to capture and parse the generated
diagnostics or to do
 your own analysis.

There is now a safer version of utf8_hop(), called utf8_hop_safe().
 Unlike
utf8_hop(), utf8_hop_safe() won't navigate before the beginning or
 after the end of the
supplied buffer.

Two new functions, utf8_hop_forward() and utf8_hop_back() are
 similar to
utf8_hop_safe() but are for when you know which direction
 you wish to travel.

Two new macros which return useful utf8 byte sequences:

BOM_UTF8

REPLACEMENT_CHARACTER_UTF8

Perl is now built with the PERL_OP_PARENT compiler define enabled by
 default. To disable it,

Perl version 5.26.1 documentation - perl5260delta

Page 24http://perldoc.perl.org

use the PERL_NO_OP_PARENT compiler define.
 This flag alters how the op_sibling field is
used in OP structures,
 and has been available optionally since perl 5.22.

See "Internal Changes" in perl5220delta for more details of what this
 build option does.

Three new ops, OP_ARGELEM, OP_ARGDEFELEM, and OP_ARGCHECK have
 been added.
These are intended principally to implement the individual
 elements of a subroutine signature,
plus any overall checking required.

The OP_PUSHRE op has been eliminated and the OP_SPLIT op has been
 changed from class
LISTOP to PMOP.

Formerly the first child of a split would be a pushre, which would have the split's regex
attached to it. Now the regex is attached directly to the split op, and the pushre has been
eliminated.

The op_class() API function has been added. This
 is like the existing OP_CLASS() macro,
but can more accurately determine what struct an op
 has been allocated as. For example
OP_CLASS() might return OA_BASEOP_OR_UNOP indicating that ops of this type are usually

allocated as an OP or UNOP; while op_class() will return OPclass_BASEOP or
OPclass_UNOP as appropriate.

All parts of the internals now agree that the sassign op is a BINOP;
 previously it was listed
as a BASEOP in regen/opcodes, which meant
 that several parts of the internals had to be
special-cased to accommodate
 it. This oddity's original motivation was to handle code like $x
||= 1;
 that is now handled in a simpler way.

The output format of the op_dump() function (as
 used by perl -Dx)
 has changed: it now
displays an "ASCII-art" tree structure, and shows more
 low-level details about each op, such
as its address and class.

The PADOFFSET type has changed from being unsigned to signed, and
 several pad-related
variables such as PL_padix have changed from being
 of type I32 to type PADOFFSET.

The DEBUGGING-mode output for regex compilation and execution has been
 enhanced.

Several obscure SV flags have been eliminated, sometimes along with the
 macros which
manipulate them: SVpbm_VALID, SVpbm_TAIL, SvTAIL_on, SvTAIL_off, SVrepl_EVAL,
SvEVALED.

An OP op_private flag has been eliminated: OPpRUNTIME. This used to
 often get set on
PMOP ops, but had become meaningless over time.

Selected Bug Fixes
Perl no longer panics when switching into some locales on machines with
 buggy strxfrm()
implementations in their libc. [perl #121734]

 $-{$name} would leak an AV on each access if the regular
 expression had no named
captures. The same applies to access to any
 hash tied with Tie::Hash::NamedCapture and
all => 1. [perl #130822]

Attempting to use the deprecated variable $# as the object in an
 indirect object method call
could cause a heap use after free or
 buffer overflow. [perl #129274]

When checking for an indirect object method call, in some rare cases
 the parser could
reallocate the line buffer but then continue to use
 pointers to the old buffer. [perl #129190]

Supplying a glob as the format argument to formline would
 cause an assertion failure. [perl
#130722]

Code like $value1 =~ qr/.../ ~~ $value2 would have the match
 converted into a
qr// operator, leaving extra elements on the stack to
 confuse any surrounding expression.

Perl version 5.26.1 documentation - perl5260delta

Page 25http://perldoc.perl.org

[perl #130705]

Since v5.24 in some obscure cases, a regex which included code blocks
 from multiple
sources (e.g., via embedded via qr// objects) could end up
 with the wrong current pad and
crash or give weird results. [perl #129881]

Occasionally local()s in a code block within a patterns weren't being
 undone when the
pattern matching backtracked over the code block. [perl #126697]

Using substr() to modify a magic variable could access freed memory
 in some cases. [perl
#129340]

Under use utf8, the entire source code is now checked for being UTF-8
 well formed, not
just quoted strings as before. [perl #126310].

The range operator ".." on strings now handles its arguments correctly when in
 the scope of
the unicode_strings
 feature. The previous behaviour was sufficiently unexpected that we
believe no
 correct program could have made use of it.

The split operator did not ensure enough space was allocated for
 its return value in scalar
context. It could then write a single
 pointer immediately beyond the end of the memory block
allocated for
 the stack. [perl #130262]

Using a large code point with the "W" pack template character with
 the current output position
aligned at just the right point could
 cause a write of a single zero byte immediately beyond the
end of an
 allocated buffer. [perl #129149]

Supplying a format's picture argument as part of the format argument list
 where the picture
specifies modifying the argument could cause an
 access to the new freed compiled form.at.
[perl #129125]

The sort() operator's built-in numeric comparison
 function didn't handle large integers that
weren't exactly
 representable by a double. This now uses the same code used to
 implement
the <=> operator. [perl #130335]

Fix issues with /(?{ ... <<EOF })/ that broke Method::Signatures. [perl #130398]

Fixed an assertion failure with chop and chomp, which
 could be triggered by chop(@x =~
tr/1/1/). [perl #130198].

Fixed a comment skipping error in patterns under /x; it could stop
 skipping a byte early, which
could be in the middle of a UTF-8
 character. [perl #130495].

perldb now ignores /dev/tty on non-Unix systems. [perl #113960];

Fix assertion failure for {}->$x when $x isn't defined. [perl #130496].

Fix an assertion error which could be triggered when a lookahead string
 in patterns exceeded
a minimum length. [perl #130522].

Only warn once per literal number about a misplaced "_". [perl #70878].

The tr/// parse code could be looking at uninitialized data after a
 perse error. [perl
#129342].

In a pattern match, a back-reference (\1) to an unmatched capture could
 read back beyond
the start of the string being matched. [perl #129377].

use re 'strict' is supposed to warn if you use a range (such as /(?[[X-Y]])/)
whose start and end digit aren't from the same group
 of 10. It didn't do that for five groups of
mathematical digits starting
 at U+1D7E.

A sub containing a "forward" declaration with the same name (e.g., sub c { sub c; })

Perl version 5.26.1 documentation - perl5260delta

Page 26http://perldoc.perl.org

could sometimes crash or loop infinitely. [perl #129090]

A crash in executing a regex with a non-anchored UTF-8 substring against a
 target string that
also used UTF-8 has been fixed. [perl #129350]

Previously, a shebang line like #!perl -i u could be erroneously
 interpreted as requesting
the -u option. This has been fixed. [perl #129336]

The regex engine was previously producing incorrect results in some rare
 situations when
backtracking past an alternation that matches only one
 thing; this
 showed up as capture
buffers ($1, $2, etc.) erroneously containing data
 from regex execution paths that weren't
actually executed for the final
 match. [perl #129897]

Certain regexes making use of the experimental regex_sets feature could
 trigger an
assertion failure. This has been fixed. [perl #129322]

Invalid assignments to a reference constructor (e.g., \eval=time) could
 sometimes crash in
addition to giving a syntax error. [perl #125679]

The parser could sometimes crash if a bareword came after evalbytes. [perl #129196]

Autoloading via a method call would warn erroneously ("Use of inherited
 AUTOLOAD for
non-method") if there was a stub present in the package into
 which the invocant had been
blessed. The warning is no longer emitted in
 such circumstances. [perl #47047]

The use of splice on arrays with non-existent elements could cause other
 operators to
crash. [perl #129164]

A possible buffer overrun when a pattern contains a fixed utf8 substring. [perl #129012]

Fixed two possible use-after-free bugs in perl's lexer. [perl #129069]

Fixed a crash with s///l where it thought it was dealing with UTF-8
 when it wasn't. [perl
#129038]

Fixed a place where the regex parser was not setting the syntax error
 correctly on a
syntactically incorrect pattern. [perl #129122]

The &. operator (and the "&" operator, when it treats its arguments as
 strings) were failing to
append a trailing null byte if at least one string
 was marked as utf8 internally. Many code paths
(system calls, regexp
 compilation) still expect there to be a null byte in the string buffer
 just
past the end of the logical string. An assertion failure was the
 result. [perl #129287]

Avoid a heap-after-use error in the parser when creating an error messge
 for a syntactically
invalid heredoc. [perl #128988]

Fix a segfault when run with -DC options on DEBUGGING builds. [perl #129106]

Fixed the parser error handling in subroutine attributes for an
 ':attr(foo' that does not have
an ending '")"'.

Fix the perl lexer to correctly handle a backslash as the last char in
 quoted-string context. This
actually fixed two bugs, [perl #129064] and [perl #129176].

In the API function gv_fetchmethod_pvn_flags, rework separator parsing
 to prevent
possible string overrun with an invalid len argument. [perl #129267]

Problems with in-place array sorts: code like @a = sort { ... } @a,
 where the source
and destination of the sort are the same plain array, are
 optimised to do less copying around.
Two side-effects of this optimisation
 were that the contents of @a as seen by sort routines
were
 partially sorted; and under some circumstances accessing @a during the
 sort could crash
the interpreter. Both these issues have been fixed, and
 Sort functions see the original value of

Perl version 5.26.1 documentation - perl5260delta

Page 27http://perldoc.perl.org

@a. [perl #128340]

Non-ASCII string delimiters are now reported correctly in error messages
 for unterminated
strings. [perl #128701]

pack("p", ...) used to emit its warning ("Attempt to pack pointer to
 temporary value")
erroneously in some cases, but has been fixed.

@DB::args is now exempt from "used once" warnings. The warnings only
 occurred under -w,
because warnings.pm itself uses @DB::args
 multiple times.

The use of built-in arrays or hash slices in a double-quoted string no
 longer issues a warning
("Possible unintended interpolation...") if the
 variable has not been mentioned before. This
affected code like qq|@DB::args| and qq|@SIG{'CHLD', 'HUP'}|. (The special
variables @- and @+ were already exempt from the warning.)

gethostent and similar functions now perform a null check internally, to
 avoid crashing with
the torsocks library. This was a regression from v5.22. [perl #128740]

defined *{'!'}, defined *{'['}, and defined *{'-'} no longer leak
 memory if the
typeglob in question has never been accessed before.

Mentioning the same constant twice in a row (which is a syntax error) no
 longer fails an
assertion under debugging builds. This was a regression
 from v5.20. [perl #126482]

Many issues relating to printf "%a" of hexadecimal floating point
 were fixed. In addition,
the "subnormals" (formerly known as "denormals")
 floating point numbers are now supported
both with the plain IEEE 754
 floating point numbers (64-bit or 128-bit) and the x86 80-bit

"extended precision". Note that subnormal hexadecimal floating
 point literals will give a
warning about "exponent underflow". [perl #128843] [perl #128889] [perl #128890] [perl
#128893] [perl #128909] [perl #128919]

A regression in v5.24 with tr/\N{U+...}/foo/ when the code point was between
 128 and
255 has been fixed. [perl #128734].

Use of a string delimiter whose code point is above 2**31 now works
 correctly on platforms
that allow this. Previously, certain characters,
 due to truncation, would be confused with other
delimiter characters
 with special meaning (such as "?" in m?...?), resulting
 in inconsistent
behaviour. Note that this is non-portable,
 and is based on Perl's extension to UTF-8, and is
probably not
 displayable nor enterable by any editor. [perl #128738]

@{x followed by a newline where "x" represents a control or non-ASCII
 character no longer
produces a garbled syntax error message or a crash. [perl #128951]

An assertion failure with %: = 0 has been fixed. [perl #128238]

In Perl 5.18, the parsing of "$foo::$bar" was accidentally changed, such
 that it would be
treated as $foo."::".$bar. The previous behavior, which
 was to parse it as $foo:: .
$bar, has been restored. [perl #128478]

Since Perl 5.20, line numbers have been off by one when perl is invoked with
 the -x switch.
This has been fixed. [perl #128508]

Vivifying a subroutine stub in a deleted stash (e.g., delete $My::{"Foo::"};
\&My::Foo::foo) no longer crashes. It had begun
 crashing in Perl 5.18. [perl #128532]

Some obscure cases of subroutines and file handles being freed at the same time
 could result
in crashes, but have been fixed. The crash was introduced in Perl
 5.22. [perl #128597]

Code that looks for a variable name associated with an uninitialized value
 could cause an
assertion failure in cases where magic is involved, such as $ISA[0][0]. This has now been
fixed. [perl #128253]

Perl version 5.26.1 documentation - perl5260delta

Page 28http://perldoc.perl.org

A crash caused by code generating the warning "Subroutine STASH::NAME
 redefined" in
cases such as sub P::f{} undef *P::; *P::f =sub{}; has been
 fixed. In these
cases, where the STASH is missing, the warning will now appear
 as "Subroutine NAME
redefined". [perl #128257]

Fixed an assertion triggered by some code that handles deprecated behavior in
 formats, e.g.,
in cases like this:

 format STDOUT =
 @
 0"$x"

[perl #128255]

A possible divide by zero in string transformation code on Windows has been
 avoided, fixing a
crash when collating an empty string. [perl #128618]

Some regular expression parsing glitches could lead to assertion failures with
 regular
expressions such as /(?<=/ and /(?<!/. This has now been fixed. [perl #128170]

 until ($x = 1) { ... } and ... until $x = 1 now properly
 warn when syntax
warnings are enabled. [perl #127333]

socket() now leaves the error code returned by the system in $! on
 failure. [perl #128316]

Assignment variants of any bitwise ops under the bitwise feature would
 crash if the
left-hand side was an array or hash. [perl #128204]

require followed by a single colon (as in foo() ? require : ... is
 now parsed
correctly as require with implicit $_, rather than require "". [perl #128307]

Scalar keys %hash can now be assigned to consistently in all scalar
 lvalue contexts.
Previously it worked for some contexts but not others.

List assignment to vec or substr with an array or hash for its first
 argument used to result in
crashes or "Can't coerce" error messages at run
 time, unlike scalar assignment, which would
give an error at compile time.
 List assignment now gives a compile-time error, too. [perl
#128260]

Expressions containing an && or || operator (or their synonyms and
 and or) were being
compiled incorrectly in some cases. If the left-hand
 side consisted of either a negated
bareword constant or a negated do {}
 block containing a constant expression, and the
right-hand side consisted of
 a negated non-foldable expression, one of the negations was
effectively
 ignored. The same was true of if and unless statement modifiers,
 though with
the left-hand and right-hand sides swapped. This long-standing
 bug has now been fixed. [perl
#127952]

reset with an argument no longer crashes when encountering stash entries
 other than globs.
[perl #128106]

Assignment of hashes to, and deletion of, typeglobs named *:::::: no
 longer causes
crashes. [perl #128086]

Perl wasn't correctly handling true/false values in the LHS of a list
 assign; specifically the truth
values returned by boolean operators.
 This could trigger an assertion failure in something like
the following:

 for ($x > $y) {
 ($_, ...) = (...); # here $_ is aliased to a truth value
 }

This was a regression from v5.24. [perl #129991]

Perl version 5.26.1 documentation - perl5260delta

Page 29http://perldoc.perl.org

Assertion failure with user-defined Unicode-like properties. [perl #130010]

Fix error message for unclosed \N{ in a regex. An unclosed \N{
 could give the wrong error
message: "\N{NAME} must be resolved by the lexer".

List assignment in list context where the LHS contained aggregates and
 where there were not
enough RHS elements, used to skip scalar lvalues.
 Previously, (($a,$b,@c,$d) = (1)) in
list context returned ($a); now
 it returns ($a,$b,$d). (($a,$b,$c) = (1)) is
unchanged: it still
 returns ($a,$b,$c). This can be seen in the following:

 sub inc { $_++ for @_ }
 inc(($a,$b,@c,$d) = (10))

Formerly, the values of ($a,$b,$d) would be left as (11,undef,undef);
 now they are
(11,1,1).

Code like this: /(?{ s!!! })/ could trigger infinite recursion on the C
 stack (not the normal
perl stack) when the last successful pattern in
 scope is itself. We avoid the segfault by simply
forbidding the use of
 the empty pattern when it would resolve to the currently executing

pattern. [perl #129903]

Avoid reading beyond the end of the line buffer in perl's lexer when
 there's a short UTF-8
character at the end. [perl #128997]

Alternations in regular expressions were sometimes failing to match
 a utf8 string against a utf8
alternate. [perl #129950]

Make do "a\0b" fail silently (and return undef and set $!)
 instead of throwing an error.
[perl #129928]

chdir with no argument didn't ensure that there was stack space
 available for returning its
result. [perl #129130]

All error messages related to do now refer to do; some formerly
 claimed to be from require
instead.

Executing undef $x where $x is tied or magical no longer incorrectly
 blames the variable for
an uninitialized-value warning encountered by the
 tied/magical code.

Code like $x = $x . "a" was incorrectly failing to yield a use of uninitialized value
 warning
when $x was a lexical variable with an undefined value. That has
 now been fixed. [perl
#127877]

undef *_; shift or undef *_; pop inside a subroutine, with no
 argument to shift or
pop, began crashing in Perl 5.14, but has now
 been fixed.

"string$scalar->$*" now correctly prefers concatenation
 overloading to string
overloading if $scalar->$* returns an
 overloaded object, bringing it into consistency with
$$scalar.

/@0{0*->@*/*0 and similar contortions used to crash, but no longer
 do, but merely produce
a syntax error. [perl #128171]

do or require with an argument which is a reference or typeglob
 which, when stringified,

contains a null character, started crashing in Perl 5.20, but has now been
 fixed. [perl #128182]

Improve the error message for a missing tie() package/method. This
 brings the error
messages in line with the ones used for normal method
 calls.

Parsing bad POSIX charclasses no longer leaks memory. [perl #128313]

Perl version 5.26.1 documentation - perl5260delta

Page 30http://perldoc.perl.org

Known Problems
G++ 6 handles subnormal (denormal) floating point values differently
 than gcc 6 or g++ 5
resulting in "flush-to-zero". The end result is
 that if you specify very small values using the
hexadecimal floating
 point format, like 0x1.fffffffffffffp-1022, they become zeros.
[perl #131388]

Errata From Previous Releases
Fixed issues with recursive regexes. The behavior was fixed in Perl 5.24. [perl #126182]

Obituary
Jon Portnoy (AVENJ), a prolific Perl author and admired Gentoo community
 member, has passed
away on August 10, 2016. He will be remembered and
 missed by all those who he came in contact
with, and enriched with his
 intellect, wit, and spirit.

It is with great sadness that we also note Kip Hampton's passing. Probably
 best known as the author
of the Perl & XML column on XML.com, he was a
 core contributor to AxKit, an XML server platform
that became an Apache
 Foundation project. He was a frequent speaker in the early days at
 OSCON,
and most recently at YAPC::NA in Madison. He was frequently on
 irc.perl.org as ubu, generally in the
#axkit-dahut community, the
 group responsible for YAPC::NA Asheville in 2011.

Kip and his constant contributions to the community will be greatly
 missed.

Acknowledgements
Perl 5.26.0 represents approximately 13 months of development since Perl 5.24.0
 and contains
approximately 360,000 lines of changes across 2,600 files from 86
 authors.

Excluding auto-generated files, documentation and release tools, there were
 approximately 230,000
lines of changes to 1,800 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community
 of users and developers.
The following people are known to have contributed the
 improvements that became Perl 5.26.0:

Aaron Crane, Abigail, Ã†var ArnfjÃ¶rÃ° Bjarmason, Alex Vandiver, Andreas
 KÃ¶nig, Andreas
Voegele, Andrew Fresh, Andy Lester, Aristotle Pagaltzis, Chad
 Granum, Chase Whitener, Chris
'BinGOs' Williams, Chris Lamb, Christian Hansen,
 Christian Millour, Colin Newell, Craig A. Berry,
Dagfinn Ilmari MannsÃ¥ker, Dan
 Collins, Daniel Dragan, Dave Cross, Dave Rolsky, David Golden,
David H.
 Gutteridge, David Mitchell, Dominic Hargreaves, Doug Bell, E. Choroba, Ed Avis,
 Father
Chrysostomos, FranÃ§ois Perrad, Hauke D, H.Merijn Brand, Hugo van der
 Sanden, Ivan Pozdeev,
James E Keenan, James Raspass, Jarkko Hietaniemi, Jerry
 D. Hedden, Jim Cromie, J. Nick Koston,
John Lightsey, Karen Etheridge, Karl
 Williamson, Leon Timmermans, Lukas Mai, Matthew Horsfall,
Maxwell Carey, Misty
 De Meo, Neil Bowers, Nicholas Clark, Nicolas R., Niko Tyni, Pali, Paul

Marquess, Peter Avalos, Petr PÃ-saÅ™, Pino Toscano, Rafael Garcia-Suarez, Reini
 Urban, Renee
Baecker, Ricardo Signes, Richard Levitte, Rick Delaney, Salvador
 FandiÃ±o, Samuel Thibault,
Sawyer X, SÃ©bastien Aperghis-Tramoni, Sergey
 Aleynikov, Shlomi Fish, Smylers, Stefan Seifert,
Steffen MÃ¼ller, Stevan
 Little, Steve Hay, Steven Humphrey, Sullivan Beck, Theo Buehler, Thomas
Sibley,
 Todd Rinaldo, Tomasz Konojacki, Tony Cook, Unicode Consortium, Yaroslav Kuzmin,
 Yves
Orton, Zefram.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Perl version 5.26.1 documentation - perl5260delta

Page 31http://perldoc.perl.org

Reporting Bugs
If you find what you think is a bug, you might check the perl bug database at https://rt.perl.org/. There
may also be information at http://www.perl.org/, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting
team.

If the bug you are reporting has security implications which make it
 inappropriate to send to a publicly
archived mailing list, then see "SECURITY VULNERABILITY CONTACT INFORMATION" in perlsec

for details of how to report the issue.

Give Thanks
If you wish to thank the Perl 5 Porters for the work we had done in Perl 5,
 you can do so by running
the perlthanks program:

 perlthanks

This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

