
Perl version 5.26.1 documentation - perl5200delta

Page 1http://perldoc.perl.org

NAME
perl5200delta - what is new for perl v5.20.0

DESCRIPTION
This document describes differences between the 5.18.0 release and the
 5.20.0 release.

If you are upgrading from an earlier release such as 5.16.0, first read perl5180delta, which describes
differences between 5.16.0 and 5.18.0.

Core Enhancements
Experimental Subroutine signatures

Declarative syntax to unwrap argument list into lexical variables. sub foo ($a,$b) {...} checks
the number of arguments and puts the
 arguments into lexical variables. Signatures are not equivalent
to
 the existing idiom of sub foo { my($a,$b) = @_; ... }. Signatures
 are only available by
enabling a non-default feature, and generate
 warnings about being experimental. The syntactic clash
with
 prototypes is managed by disabling the short prototype syntax when
 signatures are enabled.

See "Signatures" in perlsub for details.

subs now take a prototype attribute
When declaring or defining a sub, the prototype can now be specified inside
 of a prototype
attribute instead of in parens following the name.

For example, sub foo($$){} could be rewritten as sub foo : prototype($$){}.

More consistent prototype parsing
Multiple semicolons in subroutine prototypes have long been tolerated and
 treated as a single
semicolon. There was one case where this did not
 happen. A subroutine whose prototype begins with
"*" or ";*" can affect
 whether a bareword is considered a method name or sub call. This now
 applies
also to ";;;*".

Whitespace has long been allowed inside subroutine prototypes, so sub($ $) is equivalent to
sub($$), but until now it was stripped
 when the subroutine was parsed. Hence, whitespace was not
allowed in
 prototypes set by Scalar::Util::set_prototype. Now it is permitted,
 and the parser
no longer strips whitespace. This means prototype &mysub returns the original prototype,
whitespace and all.

rand now uses a consistent random number generator
Previously perl would use a platform specific random number generator, varying
 between the libc
rand(), random() or drand48().

This meant that the quality of perl's random numbers would vary from platform
 to platform, from the
15 bits of rand() on Windows to 48-bits on POSIX
 platforms such as Linux with drand48().

Perl now uses its own internal drand48() implementation on all platforms. This
 does not make perl's
rand cryptographically secure. [perl #115928]

New slice syntax
The new %hash{...} and %array[...] syntax returns a list of key/value (or
 index/value) pairs.
See "Key/Value Hash Slices" in perldata.

Experimental Postfix Dereferencing
When the postderef feature is in effect, the following syntactical
 equivalencies are set up:

 $sref->$*; # same as ${ $sref } # interpolates
 $aref->@*; # same as @{ $aref } # interpolates
 $href->%*; # same as %{ $href }
 $cref->&*; # same as &{ $cref }

Perl version 5.26.1 documentation - perl5200delta

Page 2http://perldoc.perl.org

 $gref->**; # same as *{ $gref }

 $aref->$#*; # same as $#{ $aref }

 $gref->*{ $slot }; # same as *{ $gref }{ $slot }

 $aref->@[...]; # same as @$aref[...] # interpolates
 $href->@{ ... }; # same as @$href{ ... } # interpolates
 $aref->%[...]; # same as %$aref[...]
 $href->%{ ... }; # same as %$href{ ... }

Those marked as interpolating only interpolate if the associated postderef_qq feature is also
enabled. This feature is experimental and
 will trigger experimental::postderef-category
warnings when used, unless
 they are suppressed.

For more information, consult the Postfix Dereference Syntax section of perlref.

Unicode 6.3 now supported
Perl now supports and is shipped with Unicode 6.3 (though Perl may be
 recompiled with any previous
Unicode release as well). A detailed list of
 Unicode 6.3 changes is at
http://www.unicode.org/versions/Unicode6.3.0/.

New \p{Unicode} regular expression pattern property
This is a synonym for \p{Any} and matches the set of Unicode-defined
 code points 0 - 0x10FFFF.

Better 64-bit support
On 64-bit platforms, the internal array functions now use 64-bit offsets,
 allowing Perl arrays to hold
more than 2**31 elements, if you have the memory
 available.

The regular expression engine now supports strings longer than 2**31
 characters. [perl #112790,
#116907]

The functions PerlIO_get_bufsiz, PerlIO_get_cnt, PerlIO_set_cnt and
 PerlIO_set_ptrcnt now have
SSize_t, rather than int, return values and
 parameters.

use locale now works on UTF-8 locales
Until this release, only single-byte locales, such as the ISO 8859
 series were supported. Now, the
increasingly common multi-byte UTF-8
 locales are also supported. A UTF-8 locale is one in which the

character set is Unicode and the encoding is UTF-8. The POSIX LC_CTYPE category operations
(case changing (like lc(), "\U"),
 and character classification (\w, \D, qr/[[:punct:]]/)) under

such a locale work just as if not under locale, but instead as if under use feature
'unicode_strings', except taint rules are followed.
 Sorting remains by code point order in this
release. [perl #56820].

use locale now compiles on systems without locale ability
Previously doing this caused the program to not compile. Within its
 scope the program behaves as if
in the "C" locale. Thus programs
 written for platforms that support locales can run on locale-less

platforms without change. Attempts to change the locale away from the
 "C" locale will, of course, fail.

More locale initialization fallback options
If there was an error with locales during Perl start-up, it immediately
 gave up and tried to use the "C"
locale. Now it first tries using
 other locales given by the environment variables, as detailed in
"ENVIRONMENT" in perllocale. For example, if LC_ALL and LANG are
 both set, and using the
LC_ALL locale fails, Perl will now try the LANG locale, and only if that fails, will it fall back to "C". On

Windows machines, Perl will try, ahead of using "C", the system
 default locale if all the locales given
by environment variables fail.

Perl version 5.26.1 documentation - perl5200delta

Page 3http://perldoc.perl.org

-DL runtime option now added for tracing locale setting
This is designed for Perl core developers to aid in field debugging bugs
 regarding locales.

-F now implies -a and -a implies -n
Previously -F without -a was a no-op, and -a without -n or -p
 was a no-op, with this change, if you
supply -F then both -a and -n
 are implied and if you supply -a then -n is implied.

You can still use -p for its extra behaviour. [perl #116190]

$a and $b warnings exemption
The special variables $a and $b, used in sort, are now exempt from "used
 once" warnings, even
where sort is not used. This makes it easier for
 CPAN modules to provide functions using $a and $b
for similar purposes.
 [perl #120462]

Security
Avoid possible read of free()d memory during parsing

It was possible that free()d memory could be read during parsing in the unusual
 circumstance of the
Perl program ending with a heredoc and the last line of the
 file on disk having no terminating newline
character. This has now been fixed.

Incompatible Changes
do can no longer be used to call subroutines

The do SUBROUTINE(LIST) form has resulted in a deprecation warning
 since Perl v5.0.0, and is
now a syntax error.

Quote-like escape changes
The character after \c in a double-quoted string ("..." or qq(...))
 or regular expression must now be a
printable character and may not be {.

A literal { after \B or \b is now fatal.

These were deprecated in perl v5.14.0.

Tainting happens under more circumstances; now conforms to documentation
This affects regular expression matching and changing the case of a
 string (lc, "\U", etc.) within the
scope of use locale.
 The result is now tainted based on the operation, no matter what the
 contents
of the string were, as the documentation (perlsec, "SECURITY" in perllocale) indicates it should.
Previously, for the case
 change operation, if the string contained no characters whose case
 change
could be affected by the locale, the result would not be tainted.
 For example, the result of uc() on an
empty string or one containing
 only above-Latin1 code points is now tainted, and wasn't before. This

leads to more consistent tainting results. Regular expression patterns
 taint their non-binary results
(like $&, $2) if and only if the
 pattern contains elements whose matching depends on the current

(potentially tainted) locale. Like the case changing functions, the
 actual contents of the string being
matched now do not matter, whereas
 formerly it did. For example, if the pattern contains a \w, the

results will be tainted even if the match did not have to use that
 portion of the pattern to succeed or
fail, because what a \w matches
 depends on locale. However, for example, a . in a pattern will not

enable tainting, because the dot matches any single character, and what
 the current locale is doesn't
change in any way what matches and what
 doesn't.

\p{}, \P{} matching has changed for non-Unicode code
 points.
\p{} and \P{} are defined by Unicode only on Unicode-defined code
 points (U+0000 through
U+10FFFF). Their behavior on matching
 these legal Unicode code points is unchanged, but there are
changes for
 code points 0x110000 and above. Previously, Perl treated the result
 of matching \p{}
and \P{} against these as undef, which
 translates into "false". For \P{}, this was then
complemented into
 "true". A warning was supposed to be raised when this happened.
 However,
various optimizations could prevent the warning, and the
 results were often counter-intuitive, with both

Perl version 5.26.1 documentation - perl5200delta

Page 4http://perldoc.perl.org

a match and its seeming
 complement being false. Now all non-Unicode code points are treated as

typical unassigned Unicode code points. This generally is more
 Do-What-I-Mean. A warning is raised
only if the results are arguably
 different from a strict Unicode approach, and from what Perl used to
do.
 Code that needs to be strictly Unicode compliant can make this warning
 fatal, and then Perl
always raises the warning.

Details are in "Beyond Unicode code points" in perlunicode.

\p{All} has been expanded to match all possible code points
The Perl-defined regular expression pattern element \p{All}, unused
 on CPAN, used to match just
the Unicode code points; now it matches all
 possible code points; that is, it is equivalent to qr/./s.
Thus \p{All} is no longer synonymous with \p{Any}, which continues to
 match just the Unicode
code points, as Unicode says it should.

Data::Dumper's output may change
Depending on the data structures dumped and the settings set for
 Data::Dumper, the dumped output
may have changed from previous
 versions.

If you have tests that depend on the exact output of Data::Dumper,
 they may fail.

To avoid this problem in your code, test against the data structure
 from evaluating the dumped
structure, instead of the dump itself.

Locale decimal point character no longer leaks outside of use locale scope
This is actually a bug fix, but some code has come to rely on the bug
 being present, so this change is
listed here. The current locale that
 the program is running under is not supposed to be visible to Perl
code
 except within the scope of a use locale. However, until now under
 certain circumstances, the
character used for a decimal point (often a
 comma) leaked outside the scope. If your code is affected
by this
 change, simply add a use locale.

Assignments of Windows sockets error codes to $! now prefer errno.h values over
WSAGetLastError() values

In previous versions of Perl, Windows sockets error codes as returned by
 WSAGetLastError() were
assigned to $!, and some constants such as ECONNABORTED,
 not in errno.h in VC++ (or the
various Windows ports of gcc) were defined to
 corresponding WSAE* values to allow $! to be tested
against the E* constants
 exported by Errno and POSIX.

This worked well until VC++ 2010 and later, which introduced new E* constants
 with values > 100 into
errno.h, including some being (re)defined by perl
 to WSAE* values. That caused problems when
linking XS code against other
 libraries which used the original definitions of errno.h constants.

To avoid this incompatibility, perl now maps WSAE* error codes to E* values
 where possible, and
assigns those values to $!. The E* constants exported by Errno and POSIX are updated to match so
that testing $! against them,
 wherever previously possible, will continue to work as expected, and all
E*
 constants found in errno.h are now exported from those modules with their
 original errno.h values.

In order to avoid breakage in existing Perl code which assigns WSAE* values to
 $!, perl now
intercepts the assignment and performs the same mapping to E*
 values as it uses internally when
assigning to $! itself.

However, one backwards-incompatibility remains: existing Perl code which
 compares $! against the
numeric values of the WSAE* error codes that were
 previously assigned to $! will now be broken in
those cases where a
 corresponding E* value has been assigned instead. This is only an issue for

those E* values < 100, which were always exported from Errno and POSIX with their original errno.h
values, and therefore could not be used
 for WSAE* error code tests (e.g. WSAEINVAL is 10022, but
the corresponding
 EINVAL is 22). (E* values > 100, if present, were redefined to WSAE*
 values
anyway, so compatibility can be achieved by using the E* constants,
 which will work both before and
after this change, albeit using different
 numeric values under the hood.)

Perl version 5.26.1 documentation - perl5200delta

Page 5http://perldoc.perl.org

Functions PerlIO_vsprintf and PerlIO_sprintf have been removed
These two functions, undocumented, unused in CPAN, and problematic, have been
 removed.

Deprecations
The /\C/ character class

The /\C/ regular expression character class is deprecated. From perl
 5.22 onwards it will generate a
warning, and from perl 5.24 onwards it
 will be a regular expression compiler error. If you need to
examine the
 individual bytes that make up a UTF8-encoded character, then use utf8::encode()
on the string (or a copy) first.

Literal control characters in variable names
This deprecation affects things like $\cT, where \cT is a literal control (such
 as a NAK or NEGATIVE
ACKNOWLEDGE character) in
 the source code. Surprisingly, it appears that originally this was intended
as
 the canonical way of accessing variables like $^T, with the caret form only
 being added as an
alternative.

The literal control form is being deprecated for two main reasons. It has what
 are likely unfixable
bugs, such as $\cI not working as an alias for $^I, and
 their usage not being portable to non-ASCII
platforms: While $^T will work
 everywhere, \cT is whitespace in EBCDIC. [perl #119123]

References to non-integers and non-positive integers in $/
Setting $/ to a reference to zero or a reference to a negative integer is
 now deprecated, and will
behave exactly as though it was set to undef.
 If you want slurp behavior set $/ to undef explicitly.

Setting $/ to a reference to a non integer is now forbidden and will
 throw an error. Perl has never
documented what would happen in this
 context and while it used to behave the same as setting $/ to

the address of the references in future it may behave differently, so we
 have forbidden this usage.

Character matching routines in POSIX
Use of any of these functions in the POSIX module is now deprecated: isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, and isxdigit.
The
 functions are buggy and don't work on UTF-8 encoded strings. See their
 entries in POSIX for
more information.

A warning is raised on the first call to any of them from each place in
 the code that they are called.
(Hence a repeated statement in a loop
 will raise just the one warning.)

Interpreter-based threads are now discouraged
The "interpreter-based threads" provided by Perl are not the fast, lightweight
 system for multitasking
that one might expect or hope for. Threads are
 implemented in a way that make them easy to misuse.
Few people know how to
 use them correctly or will be able to provide help.

The use of interpreter-based threads in perl is officially discouraged.

Module removals
The following modules will be removed from the core distribution in a
 future release, and will at that
time need to be installed from CPAN.
 Distributions on CPAN which require these modules will need to
list them as
 prerequisites.

The core versions of these modules will now issue "deprecated"-category
 warnings to alert you to
this fact. To silence these deprecation warnings,
 install the modules in question from CPAN.

Note that the planned removal of these modules from core does not reflect a
 judgement about the
quality of the code and should not be taken as a suggestion
 that their use be halted. Their disinclusion
from core primarily hinges on
 their necessity to bootstrapping a fully functional, CPAN-capable Perl

installation, not on concerns over their design.

CGI and its associated CGI:: packages

Perl version 5.26.1 documentation - perl5200delta

Page 6http://perldoc.perl.org

inc::latest

Package::Constants

Module::Build and its associated Module::Build:: packages

Utility removals
The following utilities will be removed from the core distribution in a
 future release, and will at that
time need to be installed from CPAN.

find2perl

s2p

a2p

Performance Enhancements
Perl has a new copy-on-write mechanism that avoids the need to copy the
 internal string
buffer when assigning from one scalar to another. This
 makes copying large strings appear
much faster. Modifying one of the two
 (or more) strings after an assignment will force a copy
internally. This
 makes it unnecessary to pass strings by reference for efficiency.

This feature was already available in 5.18.0, but wasn't enabled by
 default. It is the default
now, and so you no longer need build perl with
 the Configure argument:

 -Accflags=-DPERL_NEW_COPY_ON_WRITE

It can be disabled (for now) in a perl build with:

 -Accflags=-DPERL_NO_COW

On some operating systems Perl can be compiled in such a way that any
 attempt to modify
string buffers shared by multiple SVs will crash. This
 way XS authors can test that their
modules handle copy-on-write scalars
 correctly. See "Copy on Write" in perlguts for detail.

Perl has an optimizer for regular expression patterns. It analyzes the pattern
 to find things
such as the minimum length a string has to be to match, etc. It
 now better handles code points
that are above the Latin1 range.

Executing a regex that contains the ^ anchor (or its variant under the /m flag) has been made
much faster in several situations.

Precomputed hash values are now used in more places during method lookup.

Constant hash key lookups ($hash{key} as opposed to $hash{$key}) have
 long had the
internal hash value computed at compile time, to speed up
 lookup. This optimisation has only
now been applied to hash slices as
 well.

Combined and and or operators in void context, like those
 generated for unless ($a &&
$b) and if ($a || b) now
 short circuit directly to the end of the statement. [perl #120128]

In certain situations, when return is the last statement in a subroutine's
 main scope, it will be
optimized out. This means code like:

 sub baz { return $cat; }

will now behave like:

 sub baz { $cat; }

which is notably faster.

[perl #120765]

Code like:

Perl version 5.26.1 documentation - perl5200delta

Page 7http://perldoc.perl.org

 my $x; # or @x, %x
 my $y;

is now optimized to:

 my ($x, $y);

In combination with the padrange optimization introduced in v5.18.0, this means longer
uninitialized my
 variable statements are also optimized, so:

 my $x; my @y; my %z;

becomes:

 my ($x, @y, %z);

[perl #121077]

The creation of certain sorts of lists, including array and hash slices, is now
 faster.

The optimisation for arrays indexed with a small constant integer is now
 applied for integers in
the range -128..127, rather than 0..255. This should
 speed up Perl code using expressions
like $x[-1], at the expense of
 (presumably much rarer) code using expressions like
$x[200].

The first iteration over a large hash (using keys or each) is now
 faster. This is achieved by
preallocating the hash's internal iterator
 state, rather than lazily creating it when the hash is
first iterated. (For
 small hashes, the iterator is still created only when first needed. The

assumption is that small hashes are more likely to be used as objects, and
 therefore never
allocated. For large hashes, that's less likely to be true,
 and the cost of allocating the iterator is
swamped by the cost of allocating
 space for the hash itself.)

When doing a global regex match on a string that came from the readline
 or <> operator,
the data is no longer copied unnecessarily.
 [perl #121259]

Dereferencing (as in $obj->[0] or $obj->{k}) is now faster
 when $obj is an instance of a
class that has overloaded methods, but
 doesn't overload any of the dereferencing methods
@{}, %{}, and so on.

Perl's optimiser no longer skips optimising code that follows certain eval {} expressions
(including those with an apparent infinite loop).

The implementation now does a better job of avoiding meaningless work at
 runtime. Internal
effect-free "null" operations (created as a side-effect of
 parsing Perl programs) are normally
deleted during compilation. That
 deletion is now applied in some situations that weren't
previously handled.

Perl now does less disk I/O when dealing with Unicode properties that cover
 up to three
ranges of consecutive code points.

Modules and Pragmata
New Modules and Pragmata

experimental 0.007 has been added to the Perl core.

IO::Socket::IP 0.29 has been added to the Perl core.

Updated Modules and Pragmata
Archive::Tar has been upgraded from version 1.90 to 1.96.

arybase has been upgraded from version 0.06 to 0.07.

Perl version 5.26.1 documentation - perl5200delta

Page 8http://perldoc.perl.org

Attribute::Handlers has been upgraded from version 0.94 to 0.96.

attributes has been upgraded from version 0.21 to 0.22.

autodie has been upgraded from version 2.13 to 2.23.

AutoLoader has been upgraded from version 5.73 to 5.74.

autouse has been upgraded from version 1.07 to 1.08.

B has been upgraded from version 1.42 to 1.48.

B::Concise has been upgraded from version 0.95 to 0.992.

B::Debug has been upgraded from version 1.18 to 1.19.

B::Deparse has been upgraded from version 1.20 to 1.26.

base has been upgraded from version 2.18 to 2.22.

Benchmark has been upgraded from version 1.15 to 1.18.

bignum has been upgraded from version 0.33 to 0.37.

Carp has been upgraded from version 1.29 to 1.3301.

CGI has been upgraded from version 3.63 to 3.65.
 NOTE: CGI is deprecated and may be
removed from a future version of Perl.

charnames has been upgraded from version 1.36 to 1.40.

Class::Struct has been upgraded from version 0.64 to 0.65.

Compress::Raw::Bzip2 has been upgraded from version 2.060 to 2.064.

Compress::Raw::Zlib has been upgraded from version 2.060 to 2.065.

Config::Perl::V has been upgraded from version 0.17 to 0.20.

constant has been upgraded from version 1.27 to 1.31.

CPAN has been upgraded from version 2.00 to 2.05.

CPAN::Meta has been upgraded from version 2.120921 to 2.140640.

CPAN::Meta::Requirements has been upgraded from version 2.122 to 2.125.

CPAN::Meta::YAML has been upgraded from version 0.008 to 0.012.

Data::Dumper has been upgraded from version 2.145 to 2.151.

DB has been upgraded from version 1.04 to 1.07.

DB_File has been upgraded from version 1.827 to 1.831.

DBM_Filter has been upgraded from version 0.05 to 0.06.

deprecate has been upgraded from version 0.02 to 0.03.

Devel::Peek has been upgraded from version 1.11 to 1.16.

Devel::PPPort has been upgraded from version 3.20 to 3.21.

diagnostics has been upgraded from version 1.31 to 1.34.

Digest::MD5 has been upgraded from version 2.52 to 2.53.

Perl version 5.26.1 documentation - perl5200delta

Page 9http://perldoc.perl.org

Digest::SHA has been upgraded from version 5.84 to 5.88.

DynaLoader has been upgraded from version 1.18 to 1.25.

Encode has been upgraded from version 2.49 to 2.60.

encoding has been upgraded from version 2.6_01 to 2.12.

English has been upgraded from version 1.06 to 1.09.

$OLD_PERL_VERSION was added as an alias of $].

Errno has been upgraded from version 1.18 to 1.20_03.

Exporter has been upgraded from version 5.68 to 5.70.

ExtUtils::CBuilder has been upgraded from version 0.280210 to 0.280216.

ExtUtils::Command has been upgraded from version 1.17 to 1.18.

ExtUtils::Embed has been upgraded from version 1.30 to 1.32.

ExtUtils::Install has been upgraded from version 1.59 to 1.67.

ExtUtils::MakeMaker has been upgraded from version 6.66 to 6.98.

ExtUtils::Miniperl has been upgraded from version to 1.01.

ExtUtils::ParseXS has been upgraded from version 3.18 to 3.24.

ExtUtils::Typemaps has been upgraded from version 3.19 to 3.24.

ExtUtils::XSSymSet has been upgraded from version 1.2 to 1.3.

feature has been upgraded from version 1.32 to 1.36.

fields has been upgraded from version 2.16 to 2.17.

File::Basename has been upgraded from version 2.84 to 2.85.

File::Copy has been upgraded from version 2.26 to 2.29.

File::DosGlob has been upgraded from version 1.10 to 1.12.

File::Fetch has been upgraded from version 0.38 to 0.48.

File::Find has been upgraded from version 1.23 to 1.27.

File::Glob has been upgraded from version 1.20 to 1.23.

File::Spec has been upgraded from version 3.40 to 3.47.

File::Temp has been upgraded from version 0.23 to 0.2304.

FileCache has been upgraded from version 1.08 to 1.09.

Filter::Simple has been upgraded from version 0.89 to 0.91.

Filter::Util::Call has been upgraded from version 1.45 to 1.49.

Getopt::Long has been upgraded from version 2.39 to 2.42.

Getopt::Std has been upgraded from version 1.07 to 1.10.

Hash::Util::FieldHash has been upgraded from version 1.10 to 1.15.

HTTP::Tiny has been upgraded from version 0.025 to 0.043.

Perl version 5.26.1 documentation - perl5200delta

Page 10http://perldoc.perl.org

I18N::Langinfo has been upgraded from version 0.10 to 0.11.

I18N::LangTags has been upgraded from version 0.39 to 0.40.

if has been upgraded from version 0.0602 to 0.0603.

inc::latest has been upgraded from version 0.4003 to 0.4205.
 NOTE: inc::latest is deprecated
and may be removed from a future version of Perl.

integer has been upgraded from version 1.00 to 1.01.

IO has been upgraded from version 1.28 to 1.31.

IO::Compress::Gzip and friends have been upgraded from version 2.060 to
 2.064.

IPC::Cmd has been upgraded from version 0.80 to 0.92.

IPC::Open3 has been upgraded from version 1.13 to 1.16.

IPC::SysV has been upgraded from version 2.03 to 2.04.

JSON::PP has been upgraded from version 2.27202 to 2.27203.

List::Util has been upgraded from version 1.27 to 1.38.

locale has been upgraded from version 1.02 to 1.03.

Locale::Codes has been upgraded from version 3.25 to 3.30.

Locale::Maketext has been upgraded from version 1.23 to 1.25.

Math::BigInt has been upgraded from version 1.9991 to 1.9993.

Math::BigInt::FastCalc has been upgraded from version 0.30 to 0.31.

Math::BigRat has been upgraded from version 0.2604 to 0.2606.

MIME::Base64 has been upgraded from version 3.13 to 3.14.

Module::Build has been upgraded from version 0.4003 to 0.4205.
 NOTE: Module::Build is
deprecated and may be removed from a future version of Perl.

Module::CoreList has been upgraded from version 2.89 to 3.10.

Module::Load has been upgraded from version 0.24 to 0.32.

Module::Load::Conditional has been upgraded from version 0.54 to 0.62.

Module::Metadata has been upgraded from version 1.000011 to 1.000019.

mro has been upgraded from version 1.11 to 1.16.

Net::Ping has been upgraded from version 2.41 to 2.43.

Opcode has been upgraded from version 1.25 to 1.27.

Package::Constants has been upgraded from version 0.02 to 0.04.
 NOTE:
Package::Constants is deprecated and may be removed from a future version of Perl.

Params::Check has been upgraded from version 0.36 to 0.38.

parent has been upgraded from version 0.225 to 0.228.

Parse::CPAN::Meta has been upgraded from version 1.4404 to 1.4414.

Perl::OSType has been upgraded from version 1.003 to 1.007.

Perl version 5.26.1 documentation - perl5200delta

Page 11http://perldoc.perl.org

perlfaq has been upgraded from version 5.0150042 to 5.0150044.

PerlIO has been upgraded from version 1.07 to 1.09.

PerlIO::encoding has been upgraded from version 0.16 to 0.18.

PerlIO::scalar has been upgraded from version 0.16 to 0.18.

PerlIO::via has been upgraded from version 0.12 to 0.14.

Pod::Escapes has been upgraded from version 1.04 to 1.06.

Pod::Functions has been upgraded from version 1.06 to 1.08.

Pod::Html has been upgraded from version 1.18 to 1.21.

Pod::Parser has been upgraded from version 1.60 to 1.62.

Pod::Perldoc has been upgraded from version 3.19 to 3.23.

Pod::Usage has been upgraded from version 1.61 to 1.63.

POSIX has been upgraded from version 1.32 to 1.38_03.

re has been upgraded from version 0.23 to 0.26.

Safe has been upgraded from version 2.35 to 2.37.

Scalar::Util has been upgraded from version 1.27 to 1.38.

SDBM_File has been upgraded from version 1.09 to 1.11.

Socket has been upgraded from version 2.009 to 2.013.

Storable has been upgraded from version 2.41 to 2.49.

strict has been upgraded from version 1.07 to 1.08.

subs has been upgraded from version 1.01 to 1.02.

Sys::Hostname has been upgraded from version 1.17 to 1.18.

Sys::Syslog has been upgraded from version 0.32 to 0.33.

Term::Cap has been upgraded from version 1.13 to 1.15.

Term::ReadLine has been upgraded from version 1.12 to 1.14.

Test::Harness has been upgraded from version 3.26 to 3.30.

Test::Simple has been upgraded from version 0.98 to 1.001002.

Text::ParseWords has been upgraded from version 3.28 to 3.29.

Text::Tabs has been upgraded from version 2012.0818 to 2013.0523.

Text::Wrap has been upgraded from version 2012.0818 to 2013.0523.

Thread has been upgraded from version 3.02 to 3.04.

Thread::Queue has been upgraded from version 3.02 to 3.05.

threads has been upgraded from version 1.86 to 1.93.

threads::shared has been upgraded from version 1.43 to 1.46.

Tie::Array has been upgraded from version 1.05 to 1.06.

Perl version 5.26.1 documentation - perl5200delta

Page 12http://perldoc.perl.org

Tie::File has been upgraded from version 0.99 to 1.00.

Tie::Hash has been upgraded from version 1.04 to 1.05.

Tie::Scalar has been upgraded from version 1.02 to 1.03.

Tie::StdHandle has been upgraded from version 4.3 to 4.4.

Time::HiRes has been upgraded from version 1.9725 to 1.9726.

Time::Piece has been upgraded from version 1.20_01 to 1.27.

Unicode::Collate has been upgraded from version 0.97 to 1.04.

Unicode::Normalize has been upgraded from version 1.16 to 1.17.

Unicode::UCD has been upgraded from version 0.51 to 0.57.

utf8 has been upgraded from version 1.10 to 1.13.

version has been upgraded from version 0.9902 to 0.9908.

vmsish has been upgraded from version 1.03 to 1.04.

warnings has been upgraded from version 1.18 to 1.23.

Win32 has been upgraded from version 0.47 to 0.49.

XS::Typemap has been upgraded from version 0.10 to 0.13.

XSLoader has been upgraded from version 0.16 to 0.17.

Documentation
New Documentation
perlrepository

This document was removed (actually, renamed perlgit and given a major
 overhaul) in Perl v5.14,
causing Perl documentation websites to show the now
 out of date version in Perl v5.12 as the latest
version. It has now been
 restored in stub form, directing readers to current information.

Changes to Existing Documentation
perldata

New sections have been added to document the new index/value array slice and
 key/value
hash slice syntax.

perldebguts

The DB::goto and DB::lsub debugger subroutines are now documented. [perl
 #77680]

perlexperiment

\s matching \cK is marked experimental.

ithreads were accepted in v5.8.0 (but are discouraged as of v5.20.0).

Long doubles are not considered experimental.

Code in regular expressions, regular expression backtracking verbs,
 and lvalue subroutines
are no longer listed as experimental. (This
 also affects perlre and perlsub.)

perlfunc

chop and chomp now note that they can reset the hash iterator.

exec's handling of arguments is now more clearly documented.

Perl version 5.26.1 documentation - perl5200delta

Page 13http://perldoc.perl.org

eval EXPR now has caveats about expanding floating point numbers in some
 locales.

goto EXPR is now documented to handle an expression that evalutes to a
 code reference as
if it was goto &$coderef. This behavior is at least ten
 years old.

Since Perl v5.10, it has been possible for subroutines in @INC to return
 a reference to a scalar
holding initial source code to prepend to the file.
 This is now documented.

The documentation of ref has been updated to recommend the use of blessed, isa and
reftype when dealing with references to blessed
 objects.

perlguts

Numerous minor changes have been made to reflect changes made to the perl
 internals in
this release.

New sections on Read-Only Values and Copy on Write have been added.

perlhack

The Super Quick Patch Guide section has
 been updated.

perlhacktips

The documentation has been updated to include some more examples of gdb
 usage.

perllexwarn

The perllexwarn documentation used to describe the hierarchy of warning
 categories
understood by the warnings pragma. That description has now
 been moved to the warnings
documentation itself, leaving perllexwarn
 as a stub that points to it. This change consolidates
all documentation for
 lexical warnings in a single place.

perllocale

The documentation now mentions fc() and \F, and includes many
 clarifications and
corrections in general.

perlop

The language design of Perl has always called for monomorphic operators.
 This is now
mentioned explicitly.

perlopentut

The open tutorial has been completely rewritten by Tom Christiansen, and now
 focuses on
covering only the basics, rather than providing a comprehensive
 reference to all things
openable. This rewrite came as the result of a
 vigorous discussion on perl5-porters kicked off
by a set of improvements
 written by Alexander Hartmaier to the existing perlopentut. A "more
than
 you ever wanted to know about open" document may follow in subsequent
 versions of
perl.

perlre

The fact that the regexp engine makes no effort to call (?{}) and (??{})
 constructs any specified
number of times (although it will basically DWIM
 in case of a successful match) has been
documented.

The /r modifier (for non-destructive substitution) is now documented. [perl
 #119151]

The documentation for /x and (?# comment) has been expanded and clarified.

perlreguts

The documentation has been updated in the light of recent changes to regcomp.c.

Perl version 5.26.1 documentation - perl5200delta

Page 14http://perldoc.perl.org

perlsub

The need to predeclare recursive functions with prototypes in order for the
 prototype to be
honoured in the recursive call is now documented. [perl #2726]

A list of subroutine names used by the perl implementation is now included.
 [perl #77680]

perltrap

There is now a JavaScript section.

perlunicode

The documentation has been updated to reflect Bidi_Class changes in
 Unicode 6.3.

perlvar

A new section explaining the performance issues of $`, $& and $', including
 workarounds and
changes in different versions of Perl, has been added.

Three English variable names which have long been documented but do not
 actually exist
have been removed from the documentation. These were $OLD_PERL_VERSION, $OFMT, and
$ARRAY_BASE.

(Actually, OLD_PERL_VERSION does exist, starting with this revision, but
 remained
undocumented until perl 5.22.0.)

perlxs

Several problems in the MY_CXT example have been fixed.

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

delete argument is index/value array slice, use array slice

(F) You used index/value array slice syntax (%array[...]) as the argument to delete. You
probably meant @array[...] with an @ symbol instead.

delete argument is key/value hash slice, use hash slice

(F) You used key/value hash slice syntax (%hash{...}) as the argument to delete. You
probably meant @hash{...} with an @ symbol instead.

Magical list constants are not supported

(F) You assigned a magical array to a stash element, and then tried to use the
 subroutine from
the same slot. You are asking Perl to do something it cannot
 do, details subject to change
between Perl versions.

Added Setting $/ to a %s reference is forbidden

New Warnings

%s on reference is experimental:

The "auto-deref" feature is experimental.

Starting in v5.14.0, it was possible to use push, pop, keys, and other
 built-in functions not only
on aggregate types, but on references to
 them. The feature was not deployed to its original
intended
 specification, and now may become redundant to postfix dereferencing.
 It has always
been categorized as an experimental feature, and in
 v5.20.0 is carries a warning as such.

Warnings will now be issued at compile time when these operations are
 detected.

Perl version 5.26.1 documentation - perl5200delta

Page 15http://perldoc.perl.org

 no if $] >= 5.01908, warnings => "experimental::autoderef";

Consider, though, replacing the use of these features, as they may
 change behavior again
before becoming stable.

A sequence of multiple spaces in a charnames alias definition is deprecated

Trailing white-space in a charnames alias definition is deprecated

These two deprecation warnings involving \N{...} were incorrectly
 implemented. They did
not warn by default (now they do) and could not be
 made fatal via use warnings FATAL
=> 'deprecated' (now they can).

Attribute prototype(%s) discards earlier prototype attribute in same sub

(W misc) A sub was declared as sub foo : prototype(A) : prototype(B) {}, for

example. Since each sub can only have one prototype, the earlier
 declaration(s) are discarded
while the last one is applied.

Invalid \0 character in %s for %s: %s\0%s

(W syscalls) Embedded \0 characters in pathnames or other system call arguments
 produce a
warning as of 5.20. The parts after the \0 were formerly ignored by
 system calls.

Matched non-Unicode code point 0x%X against Unicode property; may not be portable.

This replaces the message "Code point 0x%X is not Unicode, all \p{} matches
 fail; all \P{}
matches succeed".

Missing ']' in prototype for %s : %s

(W illegalproto) A grouping was started with [but never closed with].

Possible precedence issue with control flow operator

(W syntax) There is a possible problem with the mixing of a control flow
 operator (e.g. return
) and a low-precedence operator like or. Consider:

 sub { return $a or $b; }

This is parsed as:

 sub { (return $a) or $b; }

Which is effectively just:

 sub { return $a; }

Either use parentheses or the high-precedence variant of the operator.

Note this may be also triggered for constructs like:

 sub { 1 if die; }

Postfix dereference is experimental

(S experimental::postderef) This warning is emitted if you use the experimental
 postfix
dereference syntax. Simply suppress the warning if you want to use the
 feature, but know that
in doing so you are taking the risk of using an
 experimental feature which may change or be
removed in a future Perl version:

 no warnings "experimental::postderef";
 use feature "postderef", "postderef_qq";
 $ref->$*;
 $aref->@*;
 $aref->@[@indices];
 ... etc ...

Perl version 5.26.1 documentation - perl5200delta

Page 16http://perldoc.perl.org

Prototype '%s' overridden by attribute 'prototype(%s)' in %s

(W prototype) A prototype was declared in both the parentheses after the sub
 name and via
the prototype attribute. The prototype in parentheses is useless,
 since it will be replaced by
the prototype from the attribute before it's ever
 used.

Scalar value @%s[%s] better written as $%s[%s]

(W syntax) In scalar context, you've used an array index/value slice (indicated
 by %) to select
a single element of an array. Generally it's better to ask for
 a scalar value (indicated by $). The
difference is that $foo[&bar] always
 behaves like a scalar, both in the value it returns and
when evaluating its
 argument, while %foo[&bar] provides a list context to its subscript,
which
 can do weird things if you're expecting only one subscript. When called in
 list context, it
also returns the index (what &bar returns) in addition to
 the value.

Scalar value @%s{%s} better written as $%s{%s}

(W syntax) In scalar context, you've used a hash key/value slice (indicated by
 %) to select a
single element of a hash. Generally it's better to ask for a
 scalar value (indicated by $). The
difference is that $foo{&bar} always
 behaves like a scalar, both in the value it returns and
when evaluating its
 argument, while @foo{&bar} and provides a list context to its subscript,

which can do weird things if you're expecting only one subscript. When called
 in list context, it
also returns the key in addition to the value.

Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef

Unexpected exit %u

(S) exit() was called or the script otherwise finished gracefully when PERL_EXIT_WARN was
set in PL_exit_flags.

Unexpected exit failure %d

(S) An uncaught die() was called when PERL_EXIT_WARN was set in PL_exit_flags.

Use of literal control characters in variable names is deprecated

(D deprecated) Using literal control characters in the source to refer to the
 ^FOO variables,
like $^X and ${^GLOBAL_PHASE} is now deprecated. This only
 affects code like $\cT, where
\cT is a control (like a SOH) in the
 source code: ${"\cT"} and $^T remain valid.

Useless use of greediness modifier

This fixes [Perl #42957].

Changes to Existing Diagnostics
Warnings and errors from the regexp engine are now UTF-8 clean.

The "Unknown switch condition" error message has some slight changes. This
 error triggers
when there is an unknown condition in a (?(foo)) conditional.
 The error message used to
read:

 Unknown switch condition (?(%s in regex;

But what %s could be was mostly up to luck. For (?(foobar)), you might have
 seen "fo" or
"f". For Unicode characters, you would generally get a corrupted
 string. The message has
been changed to read:

 Unknown switch condition (?(...)) in regex;

Additionally, the '<-- HERE' marker in the error will now point to the
 correct spot in the
regex.

The "%s "\x%X" does not map to Unicode" warning is now correctly listed as a
 severe warning
rather than as a fatal error.

Perl version 5.26.1 documentation - perl5200delta

Page 17http://perldoc.perl.org

Under rare circumstances, one could get a "Can't coerce readonly REF to
 string" instead of
the customary "Modification of a read-only value". This
 alternate error message has been
removed.

"Ambiguous use of * resolved as operator *": This and similar warnings
 about "%" and "&"
used to occur in some circumstances where there was no
 operator of the type cited, so the
warning was completely wrong. This has
 been fixed [perl #117535, #76910].

Warnings about malformed subroutine prototypes are now more consistent in
 how the
prototypes are rendered. Some of these warnings would truncate
 prototypes containing nulls.
In other cases one warning would suppress
 another. The warning about illegal characters in
prototypes no longer says
 "after '_'" if the bad character came before the underscore.

Perl folding rules are not up-to-date for 0x%X; please use the perlbug utility to report; in regex;
marked by <-- HERE in m/%s/

This message is now only in the regexp category, and not in the deprecated
 category. It is still
a default (i.e., severe) warning [perl #89648].

%%s[%s] in scalar context better written as $%s[%s]

This warning now occurs for any %array[$index] or %hash{key} known to
 be in scalar
context at compile time. Previously it was worded "Scalar
 value %%s[%s] better written as
$%s[%s]".

Switch condition not recognized in regex; marked by <-- HERE in m/%s/:

The description for this diagnostic has been extended to cover all cases where the warning
may occur.
 Issues with the positioning of the arrow indicator have also been resolved.

The error messages for my($a?$b$c) and my(do{}) now mention "conditional
 expression"
and "do block", respectively, instead of reading 'Can't declare
 null operation in "my"'.

When use re "debug" executes a regex containing a backreference, the
 debugging output
now shows what string is being matched.

The now fatal error message Character following "\c" must be ASCII has been

reworded as Character following "\c" must be printable ASCII to emphasize

that in \cX, X must be a printable (non-control) ASCII character.

Utility Changes
a2p

A possible crash from an off-by-one error when trying to access before the
 beginning of a
buffer has been fixed. [perl #120244]

bisect.pl

The git bisection tool Porting/bisect.pl has had many enhancements.

It is provided as part of the source distribution but not installed because
 it is not self-contained as it
relies on being run from within a git
 checkout. Note also that it makes no attempt to fix tests, correct
runtime
 bugs or make something useful to install - its purpose is to make minimal
 changes to get any
historical revision of interest to build and run as close
 as possible to "as-was", and thereby make git
 bisect easy to use.

Can optionally run the test case with a timeout.

Can now run in-place in a clean git checkout.

Can run the test case under valgrind.

Can apply user supplied patches and fixes to the source checkout before
 building.

Perl version 5.26.1 documentation - perl5200delta

Page 18http://perldoc.perl.org

Now has fixups to enable building several more historical ranges of bleadperl,
 which can be
useful for pinpointing the origins of bugs or behaviour changes.

find2perl

find2perl now handles ? wildcards correctly. [perl #113054]

perlbug

perlbug now has a -p option for attaching patches with a bug report.

perlbug has been modified to supply the report template with CRLF line
 endings on Windows.

[perl #121277]

perlbug now makes as few assumptions as possible about the encoding of the
 report. This will
likely change in the future to assume UTF-8 by default but
 allow a user override.

Configuration and Compilation
The Makefile.PL for SDBM_File now generates a better Makefile, which
 avoids a race
condition during parallel makes, which could cause the build to
 fail. This is the last known
parallel make problem (on *nix platforms), and
 therefore we believe that a parallel make
should now always be error free.

installperl and installman's option handling has been refactored to use Getopt::Long. Both are
used by the Makefile install targets, and
 are not installed, so these changes are only likely
to affect custom
 installation scripts.

Single letter options now also have long names.

Invalid options are now rejected.

Command line arguments that are not options are now rejected.

Each now has a --help option to display the usage message.

The behaviour for all valid documented invocations is unchanged.

Where possible, the build now avoids recursive invocations of make when
 building pure-Perl
extensions, without removing any parallelism from the
 build. Currently around 80 extensions
can be processed directly by the make_ext.pl tool, meaning that 80 invocations of make and
160
 invocations of miniperl are no longer made.

The build system now works correctly when compiling under GCC or Clang with
 link-time
optimization enabled (the -flto option). [perl #113022]

Distinct library basenames with d_libname_unique.

When compiling perl with this option, the library files for XS modules are
 named something
"unique" -- for example, Hash/Util/Util.so becomes
 Hash/Util/PL_Hash__Util.so. This behavior
is similar to what currently
 happens on VMS, and serves as groundwork for the Android port.

sysroot option to indicate the logical root directory under gcc and clang.

When building with this option set, both Configure and the compilers search
 for all headers
and libraries under this new sysroot, instead of /.

This is a huge time saver if cross-compiling, but can also help
 on native builds if your
toolchain's files have non-standard locations.

The cross-compilation model has been renovated.
 There's several new options, and some
backwards-incompatible changes:

We now build binaries for miniperl and generate_uudmap to be used on the host,
 rather than
running every miniperl call on the target; this means that, short
 of 'make test', we no longer
need access to the target system once Configure is
 done. You can provide already-built

Perl version 5.26.1 documentation - perl5200delta

Page 19http://perldoc.perl.org

binaries through the hostperl and hostgenerate options to Configure.

Additionally, if targeting an EBCDIC platform from an ASCII host,
 or viceversa, you'll need to
run Configure with -Uhostgenerate, to
 indicate that generate_uudmap should be run on the
target.

Finally, there's also a way of having Configure end early, right after
 building the host binaries,
by cross-compiling without specifying a targethost.

The incompatible changes include no longer using xconfig.h, xlib, or
 Cross.pm, so canned
config files and Makefiles will have to be updated.

Related to the above, there is now a way of specifying the location of sh
 (or equivalent) on the
target system: targetsh.

For example, Android has its sh in /system/bin/sh, so if cross-compiling
 from a more normal
Unixy system with sh in /bin/sh, "targetsh" would end
 up as /system/bin/sh, and "sh" as
/bin/sh.

By default, gcc 4.9 does some optimizations that break perl. The -fwrapv
 option disables
those optimizations (and probably others), so for gcc 4.3
 and later (since the there might be
similar problems lurking on older versions
 too, but -fwrapv was broken before 4.3, and the
optimizations probably won't
 go away), Configure now adds -fwrapv unless the user requests
-fno-wrapv, which disables -fwrapv, or -fsanitize=undefined, which
 turns the overflows
-fwrapv ignores into runtime errors.
 [perl #121505]

Testing
The test.valgrind make target now allows tests to be run in parallel.
 This target allows
Perl's test suite to be run under Valgrind, which detects
 certain sorts of C programming errors,
though at significant cost in running
 time. On suitable hardware, allowing parallel execution
claws back a lot of
 that additional cost. [perl #121431]

Various tests in t/porting/ are no longer skipped when the perl .git directory is outside the perl
tree and pointed to by $GIT_DIR. [perl #120505]

The test suite no longer fails when the user's interactive shell maintains a $PWD environment
variable, but the /bin/sh used for running tests
 doesn't.

Platform Support
New Platforms

Android

Perl can now be built for Android, either natively or through
 cross-compilation, for all three
currently available architectures (ARM,
 MIPS, and x86), on a wide range of versions.

Bitrig

Compile support has been added for Bitrig, a fork of OpenBSD.

FreeMiNT

Support has been added for FreeMiNT, a free open-source OS for the Atari ST
 system and its
successors, based on the original MiNT that was officially
 adopted by Atari.

Synology

Synology ships its NAS boxes with a lean Linux distribution (DSM) on relative
 cheap CPU's
(like the Marvell Kirkwood mv6282 - ARMv5tel or Freescale QorIQ
 P1022 ppc - e500v2) not
meant for workstations or development. These boxes
 should build now. The basic problems
are the non-standard location for tools.

Perl version 5.26.1 documentation - perl5200delta

Page 20http://perldoc.perl.org

Discontinued Platforms
sfio

Code related to supporting the sfio I/O system has been removed.

Perl 5.004 added support to use the native API of sfio, AT&T's Safe/Fast
 I/O library. This
code still built with v5.8.0, albeit with many regression
 tests failing, but was inadvertently
broken before the v5.8.1 release,
 meaning that it has not worked on any version of Perl
released since then.
 In over a decade we have received no bug reports about this, hence it is
clear
 that no-one is using this functionality on any version of Perl that is still
 supported to any
degree.

AT&T 3b1

Configure support for the 3b1, also known as the AT&T Unix PC (and the similar
 AT&T 7300),
has been removed.

DG/UX

DG/UX was a Unix sold by Data General. The last release was in April 2001.
 It only runs on
Data General's own hardware.

EBCDIC

In the absence of a regular source of smoke reports, code intended to support
 native EBCDIC
platforms will be removed from perl before 5.22.0.

Platform-Specific Notes
Cygwin

recv() on a connected handle would populate the returned sender
 address with
whatever happened to be in the working buffer. recv()
 now uses a workaround similar
to the Win32 recv() wrapper and returns
 an empty string when recvfrom(2) doesn't
modify the supplied address
 length. [perl #118843]

Fixed a build error in cygwin.c on Cygwin 1.7.28.

Tests now handle the errors that occur when cygserver isn't
 running.

GNU/Hurd

The BSD compatibility library libbsd is no longer required for builds.

Linux

The hints file now looks for libgdbm_compat only if libgdbm itself is
 also wanted. The
former is never useful without the latter, and in some
 circumstances, including it could actually
prevent building.

Mac OS

The build system now honors an ld setting supplied by the user running Configure.

MidnightBSD

objformat was removed from version 0.4-RELEASE of MidnightBSD and had been

deprecated on earlier versions. This caused the build environment to be
 erroneously
configured for a.out rather than elf. This has been now
 been corrected.

Mixed-endian platforms

The code supporting pack and unpack operations on mixed endian
 platforms has been
removed. We believe that Perl has long been unable to
 build on mixed endian architectures
(such as PDP-11s), so we don't think
 that this change will affect any platforms which were
able to build v5.18.0.

VMS

Perl version 5.26.1 documentation - perl5200delta

Page 21http://perldoc.perl.org

The PERL_ENV_TABLES feature to control the population of %ENV at perl
 start-up
was broken in Perl 5.16.0 but has now been fixed.

Skip access checks on remotes in opendir(). [perl #121002]

A check for glob metacharacters in a path returned by the glob() operator has been
replaced with a check for VMS
 wildcard characters. This saves a significant number of
unnecessary lstat() calls such that some simple glob operations become
 60-80%
faster.

Win32

rename and link on Win32 now set $! to ENOSPC and EDQUOT when
 appropriate.
[perl #119857]

The BUILD_STATIC and ALL_STATIC makefile options for linking some or (nearly)
 all
extensions statically (into perl520.dll, and into a separate
 perl-static.exe too) were
broken for MinGW builds. This has now been fixed.

The ALL_STATIC option has also been improved to include the Encode and Win32

extensions (for both VC++ and MinGW builds).

Support for building with Visual C++ 2013 has been added. There are currently
 two
possible test failures (see "Testing Perl on Windows" in perlwin32) which
 will hopefully
be resolved soon.

Experimental support for building with Intel C++ Compiler has been added. The
 nmake
makefile (win32/Makefile) and the dmake makefile (win32/makefile.mk) can
 be used. A
"nmake test" will not pass at this time due to cpan/CGI/t/url.t.

Killing a process tree with "kill" in perlfunc and a negative signal, was broken
 starting in
5.18.0. In this bug, kill always returned 0 for a negative
 signal even for valid PIDs,
and no processes were terminated. This has been
 fixed [perl #121230].

The time taken to build perl on Windows has been reduced quite significantly
 (time
savings in the region of 30-40% are typically seen) by reducing the
 number of, usually
failing, I/O calls for each require()
 (for miniperl.exe only).
 [perl #121119]

About 15 minutes of idle sleeping was removed from running make test due to
 a bug
in which the timeout monitor used for tests could not be cancelled once
 the test
completes, and the full timeout period elapsed before running the next
 test file.
 [perl
#121395]

On a perl built without pseudo-fork (pseudo-fork builds were not affected by
 this bug),
killing a process tree with kill() and a negative
 signal resulted in kill() inverting
the returned value. For example, if kill() killed 1 process tree PID then it returned 0
instead of 1, and if kill() was passed 2 invalid PIDs then it returned 2 instead of 0.
This has
 probably been the case since the process tree kill feature was implemented
on
 Win32. It has now been corrected to follow the documented behaviour.
 [perl
#121230]

When building a 64-bit perl, an uninitialized memory read in miniperl.exe,
 used during
the build process, could lead to a 4GB wperl.exe being created.
 This has now been
fixed. (Note that perl.exe itself was unaffected, but
 obviously wperl.exe would have
been completely broken.)
 [perl #121471]

Perl can now be built with gcc version 4.8.1 from http://www.mingw.org.
 This was
previously broken due to an incorrect definition of DllMain() in one
 of perl's source files.
Earlier gcc versions were also affected when using
 version 4 of the w32api package.
Versions of gcc available from http://mingw-w64.sourceforge.net/ were not affected.
 [
perl #121643]

Perl version 5.26.1 documentation - perl5200delta

Page 22http://perldoc.perl.org

The test harness now has no failures when perl is built on a FAT drive with the

Windows OS on an NTFS drive.
 [perl #21442]

When cloning the context stack in fork() emulation, Perl_cx_dup()
 would crash
accessing parameter information for context stack entries
 that included no parameters,
as with &foo;.
 [perl #121721]

Introduced by perl #113536, a memory
 leak on every call to system and backticks (
``), on most Win32 Perls
 starting from 5.18.0 has been fixed. The memory leak only
occurred if you
 enabled psuedo-fork in your build of Win32 Perl, and were running that
build on
 Server 2003 R2 or newer OS. The leak does not appear on WinXP SP3.
 [perl
#121676]

WinCE

The building of XS modules has largely been restored. Several still cannot
 (yet) be
built but it is now possible to build Perl on WinCE with only a couple
 of further patches
(to Socket and ExtUtils::MakeMaker), hopefully to be
 incorporated soon.

Perl can now be built in one shot with no user intervention on WinCE by running
nmake -f Makefile.ce all.

Support for building with EVC (Embedded Visual C++) 4 has been restored. Perl
 can
also be built using Smart Devices for Visual C++ 2005 or 2008.

Internal Changes
The internal representation has changed for the match variables $1, $2 etc.,
 $`, $&, $',
${^PREMATCH}, ${^MATCH} and ${^POSTMATCH}. It uses slightly less
 memory, avoids
string comparisons and numeric conversions during lookup, and
 uses 23 fewer lines of C. This
change should not affect any external code.

Arrays now use NULL internally to represent unused slots, instead of
 &PL_sv_undef.
&PL_sv_undef is no longer treated as a special value, so
 av_store(av, 0, &PL_sv_undef) will
cause element 0 of that array to hold a
 read-only undefined scalar. $array[0] = anything
will croak and \$array[0] will compare equal to \undef.

The SV returned by HeSVKEY_force() now correctly reflects the UTF8ness of the
 underlying
hash key when that key is not stored as a SV. [perl #79074]

Certain rarely used functions and macros available to XS code are now
 deprecated. These
are: utf8_to_uvuni_buf (use utf8_to_uvchr_buf instead), valid_utf8_to_uvuni
(use utf8_to_uvchr_buf instead), NATIVE_TO_NEED (this did not work properly anyway),

and ASCII_TO_NEED (this did not work properly anyway).

Starting in this release, almost never does application code need to
 distinguish between the
platform's character set and Latin1, on which the
 lowest 256 characters of Unicode are based.
New code should not use utf8n_to_uvuni (use utf8_to_uvchr_buf instead),
 nor
uvuni_to_utf8 (use uvchr_to_utf8 instead),

The Makefile shortcut targets for many rarely (or never) used testing and
 profiling targets have
been removed, or merged into the only other Makefile
 target that uses them. Specifically,
these targets are gone, along with
 documentation that referenced them or explained how to
use them:

 check.third check.utf16 check.utf8 coretest minitest.prep
 minitest.utf16 perl.config.dashg perl.config.dashpg
 perl.config.gcov perl.gcov perl.gprof perl.gprof.config
 perl.pixie perl.pixie.atom perl.pixie.config perl.pixie.irix
 perl.third perl.third.config perl.valgrind.config purecovperl
 pureperl quantperl test.deparse test.taintwarn test.third
 test.torture test.utf16 test.utf8 test_notty.deparse

Perl version 5.26.1 documentation - perl5200delta

Page 23http://perldoc.perl.org

 test_notty.third test_notty.valgrind test_prep.third
 test_prep.valgrind torturetest ucheck ucheck.third ucheck.utf16
 ucheck.valgrind utest utest.third utest.utf16 utest.valgrind

It's still possible to run the relevant commands by "hand" - no underlying
 functionality has
been removed.

It is now possible to keep Perl from initializing locale handling.
 For the most part, Perl doesn't
pay attention to locale. (See perllocale.) Nonetheless, until now, on startup, it has always

initialized locale handling to the system default, just in case the
 program being executed ends
up using locales. (This is one of the first
 things a locale-aware program should do, long before
Perl knows if it
 will actually be needed or not.) This works well except when Perl is
 embedded
in another application which wants a locale that isn't the
 system default. Now, if the
environment variable PERL_SKIP_LOCALE_INIT is set at the time Perl is started, this

initialization step is skipped. Prior to this, on Windows platforms,
 the only workaround for this
deficiency was to use a hacked-up copy of
 internal Perl code. Applications that need to use
older Perls can
 discover if the embedded Perl they are using needs the workaround by
 testing
that the C preprocessor symbol HAS_SKIP_LOCALE_INIT is not
 defined. [RT #38193]

BmRARE and BmPREVIOUS have been removed. They were not used anywhere
 and are not
part of the API. For XS modules, they are now #defined as 0.

sv_force_normal, which usually croaks on read-only values, used to allow
 read-only values
to be modified at compile time. This has been changed to
 croak on read-only values
regardless. This change uncovered several core
 bugs.

Perl's new copy-on-write mechanism (which is now enabled by default),
 allows any SvPOK
scalar to be automatically upgraded to a copy-on-write
 scalar when copied. A reference count
on the string buffer is stored in
 the string buffer itself.

For example:

 $ perl -MDevel::Peek -e'$a="abc"; $b = $a; Dump $a; Dump $b'
 SV = PV(0x260cd80) at 0x2620ad8
 REFCNT = 1
 FLAGS = (POK,IsCOW,pPOK)
 PV = 0x2619bc0 "abc"\0
 CUR = 3
 LEN = 16
 COW_REFCNT = 1
 SV = PV(0x260ce30) at 0x2620b20
 REFCNT = 1
 FLAGS = (POK,IsCOW,pPOK)
 PV = 0x2619bc0 "abc"\0
 CUR = 3
 LEN = 16
 COW_REFCNT = 1

Note that both scalars share the same PV buffer and have a COW_REFCNT
 greater than
zero.

This means that XS code which wishes to modify the SvPVX() buffer of an
 SV should call
SvPV_force() or similar first, to ensure a valid (and
 unshared) buffer, and to call
SvSETMAGIC() afterwards. This in fact has
 always been the case (for example hash keys
were already copy-on-write);
 this change just spreads the COW behaviour to a wider variety of
SVs.

One important difference is that before 5.18.0, shared hash-key scalars
 used to have the
SvREADONLY flag set; this is no longer the case.

This new behaviour can still be disabled by running Configure with

Perl version 5.26.1 documentation - perl5200delta

Page 24http://perldoc.perl.org

-Accflags=-DPERL_NO_COW. This option will probably be removed in Perl
 5.22.

PL_sawampersand is now a constant. The switch this variable provided
 (to enable/disable
the pre-match copy depending on whether $& had been
 seen) has been removed and
replaced with copy-on-write, eliminating a few
 bugs.

The previous behaviour can still be enabled by running Configure with
-Accflags=-DPERL_SAWAMPERSAND.

The functions my_swap, my_htonl and my_ntohl have been removed.
 It is unclear why
these functions were ever marked as A, part of the
 API. XS code can't call them directly, as it
can't rely on them being
 compiled. Unsurprisingly, no code on CPAN references them.

The signature of the Perl_re_intuit_start() regex function has changed;
 the function
pointer intuit in the regex engine plugin structure
 has also changed accordingly. A new
parameter, strbeg has been added;
 this has the same meaning as the same-named
parameter in Perl_regexec_flags. Previously intuit would try to guess the start of
 the
string from the passed SV (if any), and would sometimes get it wrong
 (e.g. with an overloaded
SV).

The signature of the Perl_regexec_flags() regex function has
 changed; the function
pointer exec in the regex engine plugin
 structure has also changed to match. The minend
parameter now has
 type SSize_t to better support 64-bit systems.

XS code may use various macros to change the case of a character or code
 point (for
example toLOWER_utf8()). Only a couple of these were
 documented until now;
 and now
they should be used in preference to calling the underlying
 functions. See "Character case
changing" in perlapi.

The code dealt rather inconsistently with uids and gids. Some
 places assumed that they could
be safely stored in UVs, others
 in IVs, others in ints. Four new macros are introduced:

SvUID(), sv_setuid(), SvGID(), and sv_setgid()

sv_pos_b2u_flags has been added to the API. It is similar to sv_pos_b2u,
 but supports
long strings on 64-bit platforms.

PL_exit_flags can now be used by perl embedders or other XS code to have
 perl warn or
abort on an attempted exit. [perl #52000]

Compiling with -Accflags=-PERL_BOOL_AS_CHAR now allows C99 and C++
 compilers to
emulate the aliasing of bool to char that perl does for
 C89 compilers. [perl #120314]

The sv argument in "sv_2pv_flags" in perlapi, "sv_2iv_flags" in perlapi, "sv_2uv_flags" in
perlapi, and "sv_2nv_flags" in perlapi and their older wrappers
 sv_2pv, sv_2iv, sv_2uv,
sv_2nv, is now non-NULL. Passing NULL now will crash.
 When the non-NULL marker was
introduced en masse in 5.9.3 the functions
 were marked non-NULL, but since the creation of
the SV API in 5.0 alpha 2, if
 NULL was passed, the functions returned 0 or false-type values.
The code that
 supports sv argument being non-NULL dates to 5.0 alpha 2 directly, and

indirectly to Perl 1.0 (pre 5.0 api). The lack of documentation that the
 functions accepted a
NULL sv was corrected in 5.11.0 and between 5.11.0
 and 5.19.5 the functions were marked
NULLOK. As an optimization the NULLOK code
 has now been removed, and the functions
became non-NULL marked again, because
 core getter-type macros never pass NULL to these
functions and would crash
 before ever passing NULL.

The only way a NULL sv can be passed to sv_2*v* functions is if XS code
 directly calls
sv_2*v*. This is unlikely as XS code uses Sv*V* macros to get
 the underlying value out of the
SV. One possible situation which leads to
 a NULL sv being passed to sv_2*v* functions, is if
XS code defines its own
 getter type Sv*V* macros, which check for NULL before
dereferencing and
 checking the SV's flags through public API Sv*OK* macros or directly using
private API SvFLAGS, and if sv is NULL, then calling the sv_2*v functions
 with a NULL litteral
or passing the sv containing a NULL value.

Perl version 5.26.1 documentation - perl5200delta

Page 25http://perldoc.perl.org

newATTRSUB is now a macro

The public API newATTRSUB was previously a macro to the private
 function
Perl_newATTRSUB. Function Perl_newATTRSUB has been removed. newATTRSUB
 is now
macro to a different internal function.

Changes in warnings raised by utf8n_to_uvchr()

This bottom level function decodes the first character of a UTF-8 string
 into a code point. It is
accessible to XS level code, but it's
 discouraged from using it directly. There are higher level
functions
 that call this that should be used instead, such as "utf8_to_uvchr_buf" in perlapi. For
completeness though, this documents
 some changes to it. Now, tests for malformations are
done before any
 tests for other potential issues. One of those issues involves code
 points so
large that they have never appeared in any official standard
 (the current standard has scaled
back the highest acceptable code point
 from earlier versions). It is possible (though not done
in CPAN) to
 warn and/or forbid these code points, while accepting smaller code
 points that are
still above the legal Unicode maximum. The warning
 message for this now includes the code
point if representable on the
 machine. Previously it always displayed raw bytes, which is what
it
 still does for non-representable code points.

Regexp engine changes that affect the pluggable regex engine interface

Many flags that used to be exposed via regexp.h and used to populate the
 extflags member of
struct regexp have been removed. These fields were
 technically private to Perl's own regexp
engine and should not have been
 exposed there in the first place.

The affected flags are:

 RXf_NOSCAN
 RXf_CANY_SEEN
 RXf_GPOS_SEEN
 RXf_GPOS_FLOAT
 RXf_ANCH_BOL
 RXf_ANCH_MBOL
 RXf_ANCH_SBOL
 RXf_ANCH_GPOS

As well as the follow flag masks:

 RXf_ANCH_SINGLE
 RXf_ANCH

All have been renamed to PREGf_ equivalents and moved to regcomp.h.

The behavior previously achieved by setting one or more of the RXf_ANCH_
 flags (via the
RXf_ANCH mask) have now been replaced by a *single* flag bit
 in extflags:

 RXf_IS_ANCHORED

pluggable regex engines which previously used to set these flags should
 now set this flag
ALONE.

The Perl core now consistently uses av_tindex() ("the top index of an
 array") as a more
clearly-named synonym for av_len().

The obscure interpreter variable PL_timesbuf is expected to be removed
 early in the 5.21.x
development series, so that Perl 5.22.0 will not provide
 it to XS authors. While the variable still
exists in 5.20.0, we hope that
 this advance warning of the deprecation will help anyone who is
using that
 variable.

Selected Bug Fixes

Perl version 5.26.1 documentation - perl5200delta

Page 26http://perldoc.perl.org

Regular Expressions
Fixed a small number of regexp constructions that could either fail to
 match or crash perl when
the string being matched against was
 allocated above the 2GB line on 32-bit systems. [RT
#118175]

Various memory leaks involving the parsing of the (?[...]) regular
 expression construct
have been fixed.

(?[...]) now allows interpolation of precompiled patterns consisting of (?[...]) with
bracketed character classes inside ($pat = qr/(?[[a]])/; /(?[$pat])/).
Formerly, the brackets would
 confuse the regular expression parser.

The "Quantifier unexpected on zero-length expression" warning message could
 appear twice
starting in Perl v5.10 for a regular expression also
 containing alternations (e.g., "a|b")
triggering the trie optimisation.

Perl v5.18 inadvertently introduced a bug whereby interpolating mixed up-
 and down-graded
UTF-8 strings in a regex could result in malformed UTF-8
 in the pattern: specifically if a
downgraded character in the range \x80..\xff followed a UTF-8 string, e.g.

 utf8::upgrade(my $u = "\x{e5}");
 utf8::downgrade(my $d = "\x{e5}");
 /ud/

[RT #118297]

In regular expressions containing multiple code blocks, the values of $1, $2, etc., set by
nested regular expression calls would leak from
 one block to the next. Now these variables
always refer to the outer
 regular expression at the start of an embedded block [perl #117917].

/$qr/p was broken in Perl 5.18.0; the /p flag was ignored. This has been
 fixed. [perl
#118213]

Starting in Perl 5.18.0, a construct like /[#](?{})/x would have its #
 incorrectly interpreted
as a comment. The code block would be skipped,
 unparsed. This has been corrected.

Starting in Perl 5.001, a regular expression like /[#$a]/x or /[#]$a/x
 would have its #
incorrectly interpreted as a comment, so the variable would
 not interpolate. This has been
corrected. [perl #45667]

Perl 5.18.0 inadvertently made dereferenced regular expressions (${ qr// }) false as
booleans. This has been fixed.

The use of \G in regular expressions, where it's not at the start of the
 pattern, is now slightly
less buggy (although it is still somewhat
 problematic).

Where a regular expression included code blocks (/(?{...})/), and where the
 use of
constant overloading triggered a re-compilation of the code block, the
 second compilation
didn't see its outer lexical scope. This was a regression
 in Perl 5.18.0.

The string position set by pos could shift if the string changed
 representation internally to or
from utf8. This could happen, e.g., with
 references to objects with string overloading.

Taking references to the return values of two pos calls with the same
 argument, and then
assigning a reference to one and undef to the other,
 could result in assertion failures or
memory leaks.

Elements of @- and @+ now update correctly when they refer to non-existent
 captures.
Previously, a referenced element ($ref = \$-[1]) could refer to
 the wrong match after
subsequent matches.

Perl version 5.26.1 documentation - perl5200delta

Page 27http://perldoc.perl.org

The code that parses regex backrefs (or ambiguous backref/octals) such as \123
 did a simple
atoi(), which could wrap round to negative values on long digit
 strings and cause segmentation
faults. This has now been fixed. [perl
 #119505]

Assigning another typeglob to *^R no longer makes the regular expression
 engine crash.

The \N regular expression escape, when used without the curly braces (to
 mean [^\n]), was
ignoring a following * if followed by whitespace
 under /x. It had been this way since \N to
mean [^\n] was introduced
 in 5.12.0.

s///, tr/// and y/// now work when a wide character is used as the
 delimiter. [perl
#120463]

Some cases of unterminated (?...) sequences in regular expressions (e.g., /(?</) have been
fixed to produce the proper error message instead of
 "panic: memory wrap". Other cases
(e.g., /(?(/) have yet to be fixed.

When a reference to a reference to an overloaded object was returned from
 a regular
expression (??{...}) code block, an incorrect implicit
 dereference could take place if the
inner reference had been returned by
 a code block previously.

A tied variable returned from (??{...}) sees the inner values of match
 variables (i.e., the $1
etc. from any matches inside the block) in its
 FETCH method. This was not the case if a
reference to an overloaded object
 was the last thing assigned to the tied variable. Instead, the
match
 variables referred to the outer pattern during the FETCH call.

Fix unexpected tainting via regexp using locale. Previously, under certain
 conditions, the use
of character classes could cause tainting when it
 shouldn't. Some character classes are
locale-dependent, but before this
 patch, sometimes tainting was happening even for character
classes that
 don't depend on the locale. [perl #120675]

Under certain conditions, Perl would throw an error if in an lookbehind
 assertion in a regexp,
the assertion referred to a named subpattern,
 complaining the lookbehind was variable when it
wasn't. This has been
 fixed. [perl #120600], [perl #120618]. The current fix may be improved

on in the future.

$^R wasn't available outside of the regular expression that
 initialized it. [perl #121070]

A large set of fixes and refactoring for re_intuit_start() was merged,
 the highlights are:

Fixed a panic when compiling the regular expression /\x{100}[xy]\x{100}{2}/.

Fixed a performance regression when performing a global pattern match
 against a
UTF-8 string. [perl #120692]

Fixed another performance issue where matching a regular expression
 like
/ab.{1,2}x/ against a long UTF-8 string would unnecessarily
 calculate byte offsets
for a large portion of the string. [perl
 #120692]

Fixed an alignment error when compiling regular expressions when built
 with GCC on HP-UX
64-bit.

On 64-bit platforms pos can now be set to a value higher than 2**31-1.
 [perl #72766]

Perl 5 Debugger and -d
The debugger's man command been fixed. It was broken in the v5.18.0
 release. The man
command is aliased to the names doc and perldoc -
 all now work again.

@_ is now correctly visible in the debugger, fixing a regression
 introduced in v5.18.0's
debugger. [RT #118169]

Under copy-on-write builds (the default as of 5.20.0) ${'_<-e'}[0]
 no longer gets mangled.

Perl version 5.26.1 documentation - perl5200delta

Page 28http://perldoc.perl.org

This is the first line of input saved for the
 debugger's use for one-liners [perl #118627].

On non-threaded builds, setting ${"_<filename"} to a reference or
 typeglob no longer
causes __FILE__ and some error messages to produce a
 corrupt string, and no longer
prevents #line directives in string evals from
 providing the source lines to the debugger.
Threaded builds were unaffected.

Starting with Perl 5.12, line numbers were off by one if the -d switch was
 used on the #! line.
Now they are correct.

*DB::DB = sub {} if 0 no longer stops Perl's debugging mode from finding DB::DB
subs declared thereafter.

%{'_<...'} hashes now set breakpoints on the corresponding @{'_<...'}
 rather than
whichever array @DB::dbline is aliased to. [perl #119799]

Call set-magic when setting $DB::sub. [perl #121255]

The debugger's "n" command now respects lvalue subroutines and steps over
 them [perl
#118839].

Lexical Subroutines
Lexical constants (my sub a() { 42 }) no longer crash when inlined.

Parameter prototypes attached to lexical subroutines are now respected when
 compiling sub
calls without parentheses. Previously, the prototypes were
 honoured only for calls with
parentheses. [RT #116735]

Syntax errors in lexical subroutines in combination with calls to the same
 subroutines no
longer cause crashes at compile time.

Deep recursion warnings no longer crash lexical subroutines. [RT #118521]

The dtrace sub-entry probe now works with lexical subs, instead of
 crashing [perl #118305].

Undefining an inlinable lexical subroutine (my sub foo() { 42 } undef
 &foo) would
result in a crash if warnings were turned on.

An undefined lexical sub used as an inherited method no longer crashes.

The presence of a lexical sub named "CORE" no longer stops the CORE::
 prefix from working.

Everything Else
The OP allocation code now returns correctly aligned memory in all cases
 for struct pmop.
Previously it could return memory only aligned to a
 4-byte boundary, which is not correct for
an ithreads build with 64 bit IVs
 on some 32 bit platforms. Notably, this caused the build to fail
completely
 on sparc GNU/Linux. [RT #118055]

Evaluating large hashes in scalar context is now much faster, as the number
 of used chains in
the hash is now cached for larger hashes. Smaller hashes
 continue not to store it and
calculate it when needed, as this saves one IV.
 That would be 1 IV overhead for every object
built from a hash. [RT #114576]

Perl v5.16 inadvertently introduced a bug whereby calls to XSUBs that were
 not visible at
compile time were treated as lvalues and could be assigned
 to, even when the subroutine was
not an lvalue sub. This has been fixed.
 [RT #117947]

In Perl v5.18.0 dualvars that had an empty string for the string part but a
 non-zero number for
the number part starting being treated as true. In
 previous versions they were treated as false,
the string representation
 taking precedeence. The old behaviour has been restored. [RT
#118159]

Perl version 5.26.1 documentation - perl5200delta

Page 29http://perldoc.perl.org

Since Perl v5.12, inlining of constants that override built-in keywords of
 the same name had
countermanded use subs, causing subsequent mentions of
 the constant to use the built-in
keyword instead. This has been fixed.

The warning produced by -l $handle now applies to IO refs and globs, not
 just to glob refs.
That warning is also now UTF8-clean. [RT #117595]

delete local $ENV{nonexistent_env_var} no longer leaks memory.

sort and require followed by a keyword prefixed with CORE:: now
 treat it as a keyword,
and not as a subroutine or module name. [RT #24482]

Through certain conundrums, it is possible to cause the current package to
 be freed. Certain
operators (bless, reset, open, eval) could
 not cope and would crash. They have been
made more resilient. [RT #117941]

Aliasing filehandles through glob-to-glob assignment would not update
 internal method caches
properly if a package of the same name as the
 filehandle existed, resulting in filehandle
method calls going to the
 package instead. This has been fixed.

./Configure -de -Dusevendorprefix didn't default. [RT #64126]

The Statement unlikely to be reached warning was listed in perldiag as an exec
-category warning, but was enabled and disabled
 by the syntax category. On the other hand,
the exec category
 controlled its fatal-ness. It is now entirely handled by the exec
 category.

The "Replacement list is longer that search list" warning for tr/// and y/// no longer occurs
in the presence of the /c flag. [RT #118047]

Stringification of NVs are not cached so that the lexical locale controls
 stringification of the
decimal point. [perl #108378] [perl #115800]

There have been several fixes related to Perl's handling of locales. perl
 #38193 was described
above in Internal Changes.
 Also fixed is #118197, where the radix (decimal point) character
had to be an ASCII
 character (which doesn't work for some non-Western languages);
 and
#115808, in which POSIX::setlocale() on failure returned an undef which didn't warn
about not being defined even if those
 warnings were enabled.

Compiling a split operator whose third argument is a named constant
 evaluating to 0 no
longer causes the constant's value to change.

A named constant used as the second argument to index no longer gets
 coerced to a string
if it is a reference, regular expression, dualvar, etc.

A named constant evaluating to the undefined value used as the second
 argument to index
no longer produces "uninitialized" warnings at compile
 time. It will still produce them at run
time.

When a scalar was returned from a subroutine in @INC, the referenced scalar
 was magically
converted into an IO thingy, possibly resulting in "Bizarre
 copy" errors if that scalar continued
to be used elsewhere. Now Perl uses
 an internal copy of the scalar instead.

Certain uses of the sort operator are optimised to modify an array in
 place, such as @a =
sort @a. During the sorting, the array is made
 read-only. If a sort block should happen to die,
then the array remained
 read-only even outside the sort. This has been fixed.

$a and $b inside a sort block are aliased to the actual arguments to sort, so they can be
modified through those two variables. This did not
 always work, e.g., for lvalue subs and
$#ary, and probably many other
 operators. It works now.

The arguments to sort are now all in list context. If the sort
 itself were called in void or
scalar context, then some, but not all, of
 the arguments used to be in void or scalar context.

Perl version 5.26.1 documentation - perl5200delta

Page 30http://perldoc.perl.org

Subroutine prototypes with Unicode characters above U+00FF were getting
 mangled during
closure cloning. This would happen with subroutines closing
 over lexical variables declared
outside, and with lexical subs.

UNIVERSAL::can now treats its first argument the same way that method
 calls do:
Typeglobs and glob references with non-empty IO slots are treated
 as handles, and strings
are treated as filehandles, rather than packages,
 if a handle with that name exists [perl
#113932].

Method calls on typeglobs (e.g., *ARGV->getline) used to stringify
 the typeglob and then
look it up again. Combined with changes in Perl
 5.18.0, this allowed *foo->bar to call
methods on the "foo" package
 (like foo->bar). In some cases it could cause the method to
be
 called on the wrong handle. Now a typeglob argument is treated as a
 handle (just like
(*foo)->bar), or, if its IO slot is empty, an
 error is raised.

Assigning a vstring to a tied variable or to a subroutine argument aliased
 to a nonexistent
hash or array element now works, without flattening the
 vstring into a regular string.

pos, tie, tied and untie did not work
 properly on subroutine arguments aliased to
nonexistent
 hash and array elements [perl #77814, #27010].

The => fat arrow operator can now quote built-in keywords even if it
 occurs on the next line,
making it consistent with how it treats other
 barewords.

Autovivifying a subroutine stub via \&$glob started causing crashes in Perl
 5.18.0 if the
$glob was merely a copy of a real glob, i.e., a scalar that had
 had a glob assigned to it. This
has been fixed. [perl #119051]

Perl used to leak an implementation detail when it came to referencing the
 return values of
certain operators. for ($a+$b) { warn \$_; warn \$_ } used
 to display two different
memory addresses, because the \ operator was
 copying the variable. Under threaded builds,
it would also happen for
 constants (for(1) { ... }). This has been fixed. [perl #21979,
#78194,
 #89188, #109746, #114838, #115388]

The range operator .. was returning the same modifiable scalars with each
 call, unless it was
the only thing in a foreach loop header. This meant
 that changes to values within the list
returned would be visible the next time
 the operator was executed. [perl #3105]

Constant folding and subroutine inlining no longer cause operations that would
 normally return
new modifiable scalars to return read-only values instead.

Closures of the form sub () { $some_variable } are no longer inlined,
 causing changes
to the variable to be ignored by callers of the subroutine.
 [perl #79908]

Return values of certain operators such as ref would sometimes be shared
 between
recursive calls to the same subroutine, causing the inner call to
 modify the value returned by
ref in the outer call. This has been fixed.

__PACKAGE__ and constants returning a package name or hash key are now
 consistently
read-only. In various previous Perl releases, they have become
 mutable under certain
circumstances.

Enabling "used once" warnings no longer causes crashes on stash circularities
 created at
compile time (*Foo::Bar::Foo:: = *Foo::).

Undef constants used in hash keys (use constant u => undef; $h{+u}) no
 longer
produce "uninitialized" warnings at compile time.

Modifying a substitution target inside the substitution replacement no longer
 causes crashes.

The first statement inside a string eval used to use the wrong pragma setting
 sometimes

Perl version 5.26.1 documentation - perl5200delta

Page 31http://perldoc.perl.org

during constant folding. eval 'uc chr 0xe0' would randomly choose
 between Unicode,
byte, and locale semantics. This has been fixed.

The handling of return values of @INC filters (subroutines returned by
 subroutines in @INC)
has been fixed in various ways. Previously tied variables
 were mishandled, and setting $_ to a
reference or typeglob could result in
 crashes.

The SvPVbyte XS function has been fixed to work with tied scalars returning
 something other
than a string. It used to return utf8 in those cases where SvPV would.

Perl 5.18.0 inadvertently made -- and ++ crash on dereferenced regular
 expressions, and
stopped ++ from flattening vstrings.

bless no longer dies with "Can't bless non-reference value" if its first
 argument is a tied
reference.

reset with an argument no longer skips copy-on-write scalars, regular
 expressions, typeglob
copies, and vstrings. Also, when encountering those or
 read-only values, it no longer skips
any array or hash with the same name.

reset with an argument now skips scalars aliased to typeglobs
 (for $z (*foo) { reset
 "z" }). Previously it would corrupt memory or crash.

ucfirst and lcfirst were not respecting the bytes pragma. This was a
 regression from
Perl 5.12. [perl #117355]

Changes to UNIVERSAL::DESTROY now update DESTROY caches in all classes,
 instead of
causing classes that have already had objects destroyed to continue
 using the old sub. This
was a regression in Perl 5.18. [perl #114864]

All known false-positive occurrences of the deprecation warning "Useless use of
 '\'; doesn't
escape metacharacter '%c'", added in Perl 5.18.0, have been
 removed. [perl #119101]

The value of $^E is now saved across signal handlers on Windows. [perl #85104]

A lexical filehandle (as in open my $fh...) is usually given a name based on
 the current
package and the name of the variable, e.g. "main::$fh". Under
 recursion, the filehandle was
losing the "$fh" part of the name. This has been
 fixed.

Uninitialized values returned by XSUBs are no longer exempt from uninitialized
 warnings. [perl
#118693]

elsif ("") no longer erroneously produces a warning about void context.
 [perl #118753]

Passing undef to a subroutine now causes @_ to contain the same read-only
 undefined
scalar that undef returns. Furthermore, exists $_[0] will now
 return true if undef was the
first argument. [perl #7508, #109726]

Passing a non-existent array element to a subroutine does not usually
 autovivify it unless the
subroutine modifies its argument. This did not work
 correctly with negative indices and with
non-existent elements within the
 array. The element would be vivified immediately. The
delayed vivification
 has been extended to work with those. [perl #118691]

Assigning references or globs to the scalar returned by $#foo after the @foo
 array has been
freed no longer causes assertion failures on debugging builds
 and memory leaks on regular
builds.

On 64-bit platforms, large ranges like 1..1000000000000 no longer crash, but
 eat up all your
memory instead. [perl #119161]

__DATA__ now puts the DATA handle in the right package, even if the
 current package has
been renamed through glob assignment.

Perl version 5.26.1 documentation - perl5200delta

Page 32http://perldoc.perl.org

When die, last, next, redo, goto and exit unwind the scope,
 it is possible for DESTROY
recursively to call a subroutine or format that
 is currently being exited. It that case, sometimes
the lexical variables
 inside the sub would start out having values from the outer call, instead of
being undefined as they should. This has been fixed. [perl #119311]

${^MPEN} is no longer treated as a synonym for ${^MATCH}.

Perl now tries a little harder to return the correct line number in (caller)[2]. [perl #115768]

Line numbers inside multiline quote-like operators are now reported correctly.
 [perl #3643]

#line directives inside code embedded in quote-like operators are now
 respected.

Line numbers are now correct inside the second here-doc when two here-doc
 markers occur
on the same line.

An optimization in Perl 5.18 made incorrect assumptions causing a bad
 interaction with the
Devel::CallParser CPAN module. If the module was
 loaded then lexical variables declared in
separate statements following a my(...) list might fail to be cleared on scope exit.

&xsub and goto &xsub calls now allow the called subroutine to autovivify
 elements of @_.

&xsub and goto &xsub no longer crash if *_ has been undefined and has no
 ARRAY entry
(i.e. @_ does not exist).

&xsub and goto &xsub now work with tied @_.

Overlong identifiers no longer cause a buffer overflow (and a crash). They
 started doing so in
Perl 5.18.

The warning "Scalar value @hash{foo} better written as $hash{foo}" now produces
 far fewer
false positives. In particular, @hash{+function_returning_a_list}
 and @hash{ qw
"foo bar baz" } no longer warn. The same applies to array
 slices. [perl #28380, #114024]

$! = EINVAL; waitpid(0, WNOHANG); no longer goes into an internal infinite
 loop. [perl
#85228]

A possible segmentation fault in filehandle duplication has been fixed.

A subroutine in @INC can return a reference to a scalar containing the initial
 contents of the
file. However, that scalar was freed prematurely if not
 referenced elsewhere, giving random
results.

last no longer returns values that the same statement has accumulated so
 far, fixing
amongst other things the long-standing bug that push @a, last
 would try to return the @a,
copying it like a scalar in the process and
 resulting in the error, "Bizarre copy of ARRAY in
last." [perl #3112]

In some cases, closing file handles opened to pipe to or from a process, which
 had been
duplicated into a standard handle, would call perl's internal waitpid
 wrapper with a pid of zero.
With the fix for [perl #85228] this zero pid was
 passed to waitpid, possibly blocking the
process. This wait for process
 zero no longer occurs. [perl #119893]

select used to ignore magic on the fourth (timeout) argument, leading to
 effects such as
select blocking indefinitely rather than the expected sleep
 time. This has now been fixed.
[perl #120102]

The class name in for my class $foo is now parsed correctly. In the case of
 the second
character of the class name being followed by a digit (e.g. 'a1b')
 this used to give the error
"Missing $ on loop variable". [perl #120112]

Perl 5.18.0 accidentally disallowed -bareword under use strict and use integer. This

Perl version 5.26.1 documentation - perl5200delta

Page 33http://perldoc.perl.org

has been fixed. [perl #120288]

-a at the start of a line (or a hyphen with any single letter that is
 not a filetest operator) no
longer produces an erroneous 'Use of "-a"
 without parentheses is ambiguous' warning. [perl
#120288]

Lvalue context is now properly propagated into bare blocks and if and else blocks in lvalue
subroutines. Previously, arrays and hashes would
 sometimes incorrectly be flattened when
returned in lvalue list context, or
 "Bizarre copy" errors could occur. [perl #119797]

Lvalue context is now propagated to the branches of || and && (and
 their alphabetic
equivalents, or and and). This means foreach (pos $x || pos $y) {...} now allows
pos to be modified
 through $_.

stat and readline remember the last handle used; the former
 for the special _ filehandle,
the latter for ${^LAST_FH}. eval "*foo if 0" where *foo was the last handle passed to
stat
 or readline could cause that handle to be forgotten if the
 handle were not opened yet.
This has been fixed.

Various cases of delete $::{a}, delete $::{ENV} etc. causing a crash
 have been
fixed. [perl #54044]

Setting $! to EACCESS before calling require could affect require's behaviour. This has
been fixed.

The "Can't use \1 to mean $1 in expression" warning message now only occurs
 on the
right-hand (replacement) part of a substitution. Formerly it could
 happen in code embedded in
the left-hand side, or in any other quote-like
 operator.

Blessing into a reference (bless $thisref, $thatref) has long been
 disallowed, but
magical scalars for the second like $/ and those tied
 were exempt. They no longer are. [perl
#119809]

Blessing into a reference was accidentally allowed in 5.18 if the class
 argument were a
blessed reference with stale method caches (i.e., whose
 class had had subs defined since the
last method call). They are
 disallowed once more, as in 5.16.

$x->{key} where $x was declared as my Class $x no longer crashes
 if a Class::FIELDS
subroutine stub has been declared.

@$obj{'key'} and ${$obj}{key} used to be exempt from compile-time
 field checking
("No such class field"; see fields) but no longer are.

A nonexistent array element with a large index passed to a subroutine that
 ties the array and
then tries to access the element no longer results in a
 crash.

Declaring a subroutine stub named NEGATIVE_INDICES no longer makes negative
 array
indices crash when the current package is a tied array class.

Declaring a require, glob, or do subroutine stub in the
 CORE::GLOBAL:: package no
longer makes compilation of calls to the
 corresponding functions crash.

Aliasing CORE::GLOBAL:: functions to constants stopped working in Perl 5.10
 but has now
been fixed.

When `...` or qx/.../ calls a readpipe override, double-quotish
 interpolation now
happens, as is the case when there is no override.
 Previously, the presence of an override
would make these quote-like
 operators act like q{}, suppressing interpolation. [perl #115330]

<<<`...` here-docs (with backticks as the delimiters) now call readpipe overrides. [perl
#119827]

Perl version 5.26.1 documentation - perl5200delta

Page 34http://perldoc.perl.org

&CORE::exit() and &CORE::die() now respect vmsish hints.

Undefining a glob that triggers a DESTROY method that undefines the same
 glob is now safe.
It used to produce "Attempt to free unreferenced glob
 pointer" warnings and leak memory.

If subroutine redefinition (eval 'sub foo{}' or newXS for XS code)
 triggers a DESTROY
method on the sub that is being redefined, and that
 method assigns a subroutine to the same
slot (*foo = sub {}), $_[0]
 is no longer left pointing to a freed scalar. Now DESTROY is
delayed until
 the new subroutine has been installed.

On Windows, perl no longer calls CloseHandle() on a socket handle. This makes
 debugging
easier on Windows by removing certain irrelevant bad handle
 exceptions. It also fixes a race
condition that made socket functions randomly
 fail in a Perl process with multiple OS threads,
and possible test failures in dist/IO/t/cachepropagate-tcp.t. [perl #120091/118059]

Formats involving UTF-8 encoded strings, or strange vars like ties,
 overloads, or stringified
refs (and in recent
 perls, pure NOK vars) would generally do the wrong thing in formats
 when
the var is treated as a string and repeatedly chopped, as in ^<<<~~ and similar. This has now
been resolved.
 [perl #33832/45325/113868/119847/119849/119851]

semctl(..., SETVAL, ...) would set the semaphore to the top
 32-bits of the supplied
integer instead of the bottom 32-bits on
 64-bit big-endian systems. [perl #120635]

readdir() now only sets $! on error. $! is no longer set
 to EBADF when then terminating
undef is read from the directory
 unless the system call sets $!. [perl #118651]

&CORE::glob no longer causes an intermittent crash due to perl's stack
 getting corrupted.
[perl #119993]

open with layers that load modules (e.g., "<:encoding(utf8)") no longer
 runs the risk of
crashing due to stack corruption.

Perl 5.18 broke autoloading via ->SUPER::foo method calls by looking
 up AUTOLOAD from
the current package rather than the current package's
 superclass. This has been fixed. [perl
#120694]

A longstanding bug causing do {} until CONSTANT, where the constant
 holds a true
value, to read unallocated memory has been resolved. This
 would usually happen after a
syntax error. In past versions of Perl it has
 crashed intermittently. [perl #72406]

Fix HP-UX $! failure. HP-UX strerror() returns an empty string for an
 unknown error code.
This caused an assertion to fail under DEBUGGING
 builds. Now instead, the returned string
for "$!" contains text
 indicating the code is for an unknown error.

Individually-tied elements of @INC (as in tie $INC[0]...) are now
 handled correctly.
Formerly, whether a sub returned by such a tied element
 would be treated as a sub depended
on whether a FETCH had occurred
 previously.

getc on a byte-sized handle after the same getc operator had been
 used on a utf8 handle
used to treat the bytes as utf8, resulting in erratic
 behavior (e.g., malformed UTF-8 warnings).

An initial { at the beginning of a format argument line was always
 interpreted as the beginning
of a block prior to v5.18. In Perl v5.18, it
 started being treated as an ambiguous token. The
parser would guess
 whether it was supposed to be an anonymous hash constructor or a block
based on the contents. Now the previous behavious has been restored.
 [perl #119973]

In Perl v5.18 undef *_; goto &sub and local *_; goto &sub started
 crashing. This
has been fixed. [perl #119949]

Backticks (`` or qx//) combined with multiple threads on
 Win32 could result in output
sent to stdout on one thread being
 captured by backticks of an external command in another

Perl version 5.26.1 documentation - perl5200delta

Page 35http://perldoc.perl.org

thread.This could occur for pseudo-forked processes too, as Win32's
 pseudo-fork is
implemented in terms of threads. [perl #77672]

open $fh, ">+", undef no longer leaks memory when TMPDIR is set
 but points to a
directory a temporary file cannot be created in. [perl
 #120951]

 for ($h{k} || '') no longer auto-vivifies $h{k}. [perl
 #120374]

On Windows machines, Perl now emulates the POSIX use of the environment
 for locale
initialization. Previously, the environment was ignored.
 See "ENVIRONMENT" in perllocale.

Fixed a crash when destroying a self-referencing GLOB. [perl #121242]

Known Problems
IO::Socket is known to fail tests on AIX 5.3. There is a patch in the request
 tracker, #120835,
which may be applied to future releases.

The following modules are known to have test failures with this version of
 Perl. Patches have
been submitted, so there will hopefully be new releases
 soon:

Data::Structure::Util version 0.15

HTML::StripScripts version 1.05

List::Gather version 0.08.

Obituary
Diana Rosa, 27, of Rio de Janeiro, went to her long rest on May 10,
 2014, along with the plush camel
she kept hanging on her computer screen
 all the time. She was a passionate Perl hacker who loved
the language and its
 community, and who never missed a Rio.pm event. She was a true artist, an

enthusiast about writing code, singing arias and graffiting walls. We'll never
 forget you.

Greg McCarroll died on August 28, 2013.

Greg was well known for many good reasons. He was one of the organisers of
 the first
YAPC::Europe, which concluded with an unscheduled auction where he
 frantically tried to raise extra
money to avoid the conference making a
 loss. It was Greg who mistakenly arrived for a london.pm
meeting a week
 late; some years later he was the one who sold the choice of official
 meeting date at
a YAPC::Europe auction, and eventually as glorious leader of
 london.pm he got to inherit the
irreverent confusion that he had created.

Always helpful, friendly and cheerfully optimistic, you will be missed, but
 never forgotten.

Acknowledgements
Perl 5.20.0 represents approximately 12 months of development since Perl 5.18.0
 and contains
approximately 470,000 lines of changes across 2,900 files from 124
 authors.

Excluding auto-generated files, documentation and release tools, there were
 approximately 280,000
lines of changes to 1,800 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community
 of users and developers.
The following people are known to have contributed the
 improvements that became Perl 5.20.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Abir Viqar, Alan Haggai Alavi, Alan
 Hourihane, Alexander
Voronov, Alexandr Ciornii, Andy Dougherty, Anno Siegel,
 Aristotle Pagaltzis, Arthur Axel 'fREW'
Schmidt, Brad Gilbert, Brendan Byrd,
 Brian Childs, Brian Fraser, Brian Gottreu, Chris 'BinGOs'
Williams, Christian
 Millour, Colin Kuskie, Craig A. Berry, Dabrien 'Dabe' Murphy, Dagfinn Ilmari

MannsÃ¥ker, Daniel Dragan, Darin McBride, David Golden, David Leadbeater, David
 Mitchell, David
Nicol, David Steinbrunner, Dennis Kaarsemaker, Dominic
 Hargreaves, Ed Avis, Eric Brine, Evan
Zacks, Father Chrysostomos, Florian
 Ragwitz, FranÃ§ois Perrad, Gavin Shelley, Gideon Israel
Dsouza, Gisle Aas,
 Graham Knop, H.Merijn Brand, Hauke D, Heiko Eissfeldt, Hiroo Hayashi, Hojung

Perl version 5.26.1 documentation - perl5200delta

Page 36http://perldoc.perl.org

Youn, James E Keenan, Jarkko Hietaniemi, Jerry D. Hedden, Jess Robinson, Jesse
 Luehrs, Johan
Vromans, John Gardiner Myers, John Goodyear, John P. Linderman,
 John Peacock, kafka, Kang-min
Liu, Karen Etheridge, Karl Williamson, Keedi Kim,
 Kent Fredric, kevin dawson, Kevin Falcone, Kevin
Ryde, Leon Timmermans, Lukas
 Mai, Marc Simpson, Marcel GrÃ¼nauer, Marco Peereboom, Marcus
Holland-Moritz,
 Mark Jason Dominus, Martin McGrath, Matthew Horsfall, Max Maischein, Mike

Doherty, Moritz Lenz, Nathan Glenn, Nathan Trapuzzano, Neil Bowers, Neil
 Williams, Nicholas Clark,
Niels Thykier, Niko Tyni, Olivier MenguÃ©, Owain G.
 Ainsworth, Paul Green, Paul Johnson, Peter
John Acklam, Peter Martini, Peter
 Rabbitson, Petr PÃ-saÅ™, Philip Boulain, Philip Guenther, Piotr
Roszatycki,
 Rafael Garcia-Suarez, Reini Urban, Reuben Thomas, Ricardo Signes, Ruslan
 Zakirov,
Sergey Alekseev, Shirakata Kentaro, Shlomi Fish, Slaven Rezic,
 Smylers, Steffen MÃ¼ller, Steve
Hay, Sullivan Beck, Thomas Sibley, Tobias
 Leich, Toby Inkster, Tokuhiro Matsuno, Tom Christiansen,
Tom Hukins, Tony Cook,
 Victor Efimov, Viktor Turskyi, Vladimir Timofeev, YAMASHINA Hio, Yves
Orton,
 Zefram, ZsbÃ¡n Ambrus, Ã†var ArnfjÃ¶rÃ° Bjarmason.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently
 posted to the
comp.lang.perl.misc newsgroup and the perl bug database at
 http://rt.perl.org/perlbug/ . There may
also be information at
 http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send it
 to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who will be
 able to help
assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please only use this
address for
 security issues in the Perl core, not for modules independently distributed on
 CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

