
Perl version 5.26.1 documentation - constant

Page 1http://perldoc.perl.org

NAME
constant - Perl pragma to declare constants

SYNOPSIS
 use constant PI => 4 * atan2(1, 1);
 use constant DEBUG => 0;

 print "Pi equals ", PI, "...\n" if DEBUG;

 use constant {
 SEC => 0,
 MIN => 1,
 HOUR => 2,
 MDAY => 3,
 MON => 4,
 YEAR => 5,
 WDAY => 6,
 YDAY => 7,
 ISDST => 8,
 };

 use constant WEEKDAYS => qw(
 Sunday Monday Tuesday Wednesday Thursday Friday Saturday
);

 print "Today is ", (WEEKDAYS)[(localtime)[WDAY]], ".\n";

DESCRIPTION
This pragma allows you to declare constants at compile-time.

When you declare a constant such as PI using the method shown
 above, each machine your script
runs upon can have as many digits
 of accuracy as it can use. Also, your program will be easier to

read, more likely to be maintained (and maintained correctly), and
 far less likely to send a space
probe to the wrong planet because
 nobody noticed the one equation in which you wrote 3.14195.

When a constant is used in an expression, Perl replaces it with its
 value at compile time, and may
then optimize the expression further.
 In particular, any code in an if (CONSTANT) block will be
optimized
 away if the constant is false.

NOTES
As with all use directives, defining a constant happens at
 compile time. Thus, it's probably not correct
to put a constant
 declaration inside of a conditional statement (like if ($foo)
 { use constant
... }).

Constants defined using this module cannot be interpolated into
 strings like variables. However,
concatenation works just fine:

 print "Pi equals PI...\n"; # WRONG: does not expand "PI"
 print "Pi equals ".PI."...\n"; # right

Even though a reference may be declared as a constant, the reference may
 point to data which may
be changed, as this code shows.

 use constant ARRAY => [1,2,3,4];
 print ARRAY->[1];

Perl version 5.26.1 documentation - constant

Page 2http://perldoc.perl.org

 ARRAY->[1] = " be changed";
 print ARRAY->[1];

Constants belong to the package they are defined in. To refer to a
 constant defined in another
package, specify the full package name, as
 in Some::Package::CONSTANT. Constants may be
exported by modules,
 and may also be called as either class or instance methods, that is,
 as
Some::Package->CONSTANT or as $obj->CONSTANT where $obj is an instance of
Some::Package. Subclasses may define
 their own constants to override those in their base class.

As of version 1.32 of this module, constants can be defined in packages
 other than the caller, by
including the package name in the name of the
 constant:

 use constant "OtherPackage::FWIBBLE" => 7865;
 constant->import("Other::FWOBBLE",$value); # dynamically at run time

The use of all caps for constant names is merely a convention,
 although it is recommended in order to
make constants stand out
 and to help avoid collisions with other barewords, keywords, and

subroutine names. Constant names must begin with a letter or
 underscore. Names beginning with a
double underscore are reserved. Some
 poor choices for names will generate warnings, if warnings
are enabled at
 compile time.

List constants
Constants may be lists of more (or less) than one value. A constant
 with no values evaluates to
undef in scalar context. Note that
 constants with more than one value do not return their last value in
scalar context as one might expect. They currently return the number
 of values, but this may change
in the future. Do not use constants
 with multiple values in scalar context.

NOTE: This implies that the expression defining the value of a
 constant is evaluated in list context.
This may produce surprises:

 use constant TIMESTAMP => localtime; # WRONG!
 use constant TIMESTAMP => scalar localtime; # right

The first line above defines TIMESTAMP as a 9-element list, as
 returned by localtime() in list
context. To set it to the string
 returned by localtime() in scalar context, an explicit scalar

keyword is required.

List constants are lists, not arrays. To index or slice them, they
 must be placed in parentheses.

 my @workdays = WEEKDAYS[1 .. 5]; # WRONG!
 my @workdays = (WEEKDAYS)[1 .. 5]; # right

Defining multiple constants at once
Instead of writing multiple use constant statements, you may define
 multiple constants in a single
statement by giving, instead of the
 constant name, a reference to a hash where the keys are the
names of
 the constants to be defined. Obviously, all constants defined using
 this method must have a
single value.

 use constant {
 FOO => "A single value",
 BAR => "This", "won't", "work!", # Error!
 };

This is a fundamental limitation of the way hashes are constructed in
 Perl. The error messages
produced when this happens will often be
 quite cryptic -- in the worst case there may be none at all,
and
 you'll only later find that something is broken.

Perl version 5.26.1 documentation - constant

Page 3http://perldoc.perl.org

When defining multiple constants, you cannot use the values of other
 constants defined in the same
declaration. This is because the
 calling package doesn't know about any constant within that group

until after the use statement is finished.

 use constant {
 BITMASK => 0xAFBAEBA8,
 NEGMASK => ~BITMASK, # Error!
 };

Magic constants
Magical values and references can be made into constants at compile
 time, allowing for way cool stuff
like this. (These error numbers
 aren't totally portable, alas.)

 use constant E2BIG => ($! = 7);
 print E2BIG, "\n"; # something like "Arg list too long"
 print 0+E2BIG, "\n"; # "7"

You can't produce a tied constant by giving a tied scalar as the
 value. References to tied variables,
however, can be used as
 constants without any problems.

TECHNICAL NOTES
In the current implementation, scalar constants are actually
 inlinable subroutines. As of version 5.004
of Perl, the appropriate
 scalar constant is inserted directly in place of some subroutine
 calls, thereby
saving the overhead of a subroutine call. See "Constant Functions" in perlsub for details about how
and when this
 happens.

In the rare case in which you need to discover at run time whether a
 particular constant has been
declared via this module, you may use
 this function to examine the hash %constant::declared. If
the given
 constant name does not include a package name, the current package is
 used.

 sub declared ($) {
 use constant 1.01; # don't omit this!
 my $name = shift;
 $name =~ s/^::/main::/;
 my $pkg = caller;
 my $full_name = $name =~ /::/ ? $name : "${pkg}::$name";
 $constant::declared{$full_name};
 }

CAVEATS
List constants are not inlined unless you are using Perl v5.20 or higher.
 In v5.20 or higher, they are
still not read-only, but that may change in
 future versions.

It is not possible to have a subroutine or a keyword with the same
 name as a constant in the same
package. This is probably a Good Thing.

A constant with a name in the list STDIN STDOUT STDERR ARGV ARGVOUT
 ENV INC SIG is not
allowed anywhere but in package main::, for
 technical reasons.

Unlike constants in some languages, these cannot be overridden
 on the command line or via
environment variables.

You can get into trouble if you use constants in a context which
 automatically quotes barewords (as is
true for any subroutine call).
 For example, you can't say $hash{CONSTANT} because CONSTANT will

be interpreted as a string. Use $hash{CONSTANT()} or $hash{+CONSTANT} to prevent the
bareword quoting mechanism from
 kicking in. Similarly, since the => operator quotes a bareword

immediately to its left, you have to say CONSTANT() => 'value'
 (or simply use a comma in place

Perl version 5.26.1 documentation - constant

Page 4http://perldoc.perl.org

of the big arrow) instead of CONSTANT => 'value'.

SEE ALSO
Readonly - Facility for creating read-only scalars, arrays, hashes.

Attribute::Constant - Make read-only variables via attribute

Scalar::Readonly - Perl extension to the SvREADONLY scalar flag

Hash::Util - A selection of general-utility hash subroutines (mostly
 to lock/unlock keys and values)

BUGS
Please report any bugs or feature requests via the perlbug(1) utility.

AUTHORS
Tom Phoenix, <rootbeer@redcat.com>, with help from
 many other folks.

Multiple constant declarations at once added by Casey West, <casey@geeknest.com>.

Documentation mostly rewritten by Ilmari Karonen, <perl@itz.pp.sci.fi>.

This program is maintained by the Perl 5 Porters. The CPAN distribution is maintained by Sébastien
Aperghis-Tramoni <sebastien@aperghis.net>.

COPYRIGHT & LICENSE
Copyright (C) 1997, 1999 Tom Phoenix

This module is free software; you can redistribute it or modify it
 under the same terms as Perl itself.

