
Perl version 5.26.1 documentation - Math::BigFloat

Page 1http://perldoc.perl.org

NAME
Math::BigFloat - Arbitrary size floating point math package

SYNOPSIS
 use Math::BigFloat;

 # Configuration methods (may be used as class methods and instance
methods)

 Math::BigFloat->accuracy(); # get class accuracy
 Math::BigFloat->accuracy($n); # set class accuracy
 Math::BigFloat->precision(); # get class precision
 Math::BigFloat->precision($n); # set class precision
 Math::BigFloat->round_mode(); # get class rounding mode
 Math::BigFloat->round_mode($m); # set global round mode, must be one of
 # 'even', 'odd', '+inf', '-inf', 'zero',
 # 'trunc', or 'common'
 Math::BigFloat->config(); # return hash with configuration

 # Constructor methods (when the class methods below are used as instance
 # methods, the value is assigned the invocand)

 $x = Math::BigFloat->new($str); # defaults to 0
 $x = Math::BigFloat->new('0x123'); # from hexadecimal
 $x = Math::BigFloat->new('0b101'); # from binary
 $x = Math::BigFloat->from_hex('0xc.afep+3'); # from hex
 $x = Math::BigFloat->from_hex('cafe'); # ditto
 $x = Math::BigFloat->from_oct('1.3267p-4'); # from octal
 $x = Math::BigFloat->from_oct('0377'); # ditto
 $x = Math::BigFloat->from_bin('0b1.1001p-4'); # from binary
 $x = Math::BigFloat->from_bin('0101'); # ditto
 $x = Math::BigFloat->bzero(); # create a +0
 $x = Math::BigFloat->bone(); # create a +1
 $x = Math::BigFloat->bone('-'); # create a -1
 $x = Math::BigFloat->binf(); # create a +inf
 $x = Math::BigFloat->binf('-'); # create a -inf
 $x = Math::BigFloat->bnan(); # create a Not-A-Number
 $x = Math::BigFloat->bpi(); # returns pi

 $y = $x->copy(); # make a copy (unlike $y = $x)
 $y = $x->as_int(); # return as BigInt

 # Boolean methods (these don't modify the invocand)

 $x->is_zero(); # if $x is 0
 $x->is_one(); # if $x is +1
 $x->is_one("+"); # ditto
 $x->is_one("-"); # if $x is -1
 $x->is_inf(); # if $x is +inf or -inf
 $x->is_inf("+"); # if $x is +inf
 $x->is_inf("-"); # if $x is -inf
 $x->is_nan(); # if $x is NaN

Perl version 5.26.1 documentation - Math::BigFloat

Page 2http://perldoc.perl.org

 $x->is_positive(); # if $x > 0
 $x->is_pos(); # ditto
 $x->is_negative(); # if $x < 0
 $x->is_neg(); # ditto

 $x->is_odd(); # if $x is odd
 $x->is_even(); # if $x is even
 $x->is_int(); # if $x is an integer

 # Comparison methods

 $x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0)
 $x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0)
 $x->beq($y); # true if and only if $x == $y
 $x->bne($y); # true if and only if $x != $y
 $x->blt($y); # true if and only if $x < $y
 $x->ble($y); # true if and only if $x <= $y
 $x->bgt($y); # true if and only if $x > $y
 $x->bge($y); # true if and only if $x >= $y

 # Arithmetic methods

 $x->bneg(); # negation
 $x->babs(); # absolute value
 $x->bsgn(); # sign function (-1, 0, 1, or NaN)
 $x->bnorm(); # normalize (no-op)
 $x->binc(); # increment $x by 1
 $x->bdec(); # decrement $x by 1
 $x->badd($y); # addition (add $y to $x)
 $x->bsub($y); # subtraction (subtract $y from $x)
 $x->bmul($y); # multiplication (multiply $x by $y)
 $x->bmuladd($y,$z); # $x = $x * $y + $z
 $x->bdiv($y); # division (floored), set $x to quotient
 # return (quo,rem) or quo if scalar
 $x->btdiv($y); # division (truncated), set $x to quotient
 # return (quo,rem) or quo if scalar
 $x->bmod($y); # modulus (x % y)
 $x->btmod($y); # modulus (truncated)
 $x->bmodinv($mod); # modular multiplicative inverse
 $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
 $x->bpow($y); # power of arguments (x ** y)
 $x->blog(); # logarithm of $x to base e (Euler's number)
 $x->blog($base); # logarithm of $x to base $base (e.g., base 2)
 $x->bexp(); # calculate e ** $x where e is Euler's number
 $x->bnok($y); # x over y (binomial coefficient n over k)
 $x->bsin(); # sine
 $x->bcos(); # cosine
 $x->batan(); # inverse tangent
 $x->batan2($y); # two-argument inverse tangent
 $x->bsqrt(); # calculate square-root
 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
 $x->bfac(); # factorial of $x (1*2*3*4*..$x)

 $x->blsft($n); # left shift $n places in base 2

Perl version 5.26.1 documentation - Math::BigFloat

Page 3http://perldoc.perl.org

 $x->blsft($n,$b); # left shift $n places in base $b
 # returns (quo,rem) or quo (scalar context)
 $x->brsft($n); # right shift $n places in base 2
 $x->brsft($n,$b); # right shift $n places in base $b
 # returns (quo,rem) or quo (scalar context)

 # Bitwise methods

 $x->band($y); # bitwise and
 $x->bior($y); # bitwise inclusive or
 $x->bxor($y); # bitwise exclusive or
 $x->bnot(); # bitwise not (two's complement)

 # Rounding methods
 $x->round($A,$P,$mode); # round to accuracy or precision using
 # rounding mode $mode
 $x->bround($n); # accuracy: preserve $n digits
 $x->bfround($n); # $n > 0: round to $nth digit left of dec. point
 # $n < 0: round to $nth digit right of dec. point
 $x->bfloor(); # round towards minus infinity
 $x->bceil(); # round towards plus infinity
 $x->bint(); # round towards zero

 # Other mathematical methods

 $x->bgcd($y); # greatest common divisor
 $x->blcm($y); # least common multiple

 # Object property methods (do not modify the invocand)

 $x->sign(); # the sign, either +, - or NaN
 $x->digit($n); # the nth digit, counting from the right
 $x->digit(-$n); # the nth digit, counting from the left
 $x->length(); # return number of digits in number
 ($xl,$f) = $x->length(); # length of number and length of fraction
 # part, latter is always 0 digits long
 # for Math::BigInt objects
 $x->mantissa(); # return (signed) mantissa as BigInt
 $x->exponent(); # return exponent as BigInt
 $x->parts(); # return (mantissa,exponent) as BigInt
 $x->sparts(); # mantissa and exponent (as integers)
 $x->nparts(); # mantissa and exponent (normalised)
 $x->eparts(); # mantissa and exponent (engineering notation)
 $x->dparts(); # integer and fraction part

 # Conversion methods (do not modify the invocand)

 $x->bstr(); # decimal notation, possibly zero padded
 $x->bsstr(); # string in scientific notation with integers
 $x->bnstr(); # string in normalized notation
 $x->bestr(); # string in engineering notation
 $x->bdstr(); # string in decimal notation
 $x->as_hex(); # as signed hexadecimal string with prefixed 0x

Perl version 5.26.1 documentation - Math::BigFloat

Page 4http://perldoc.perl.org

 $x->as_bin(); # as signed binary string with prefixed 0b
 $x->as_oct(); # as signed octal string with prefixed 0

 # Other conversion methods

 $x->numify(); # return as scalar (might overflow or underflow)

DESCRIPTION
Math::BigFloat provides support for arbitrary precision floating point.
 Overloading is also provided for
Perl operators.

All operators (including basic math operations) are overloaded if you
 declare your big floating point
numbers as

 $x = Math::BigFloat -> new('12_3.456_789_123_456_789E-2');

Operations with overloaded operators preserve the arguments, which is
 exactly what you expect.

Input
Input values to these routines may be any scalar number or string that looks
 like a number and
represents a floating point number.

Leading and trailing whitespace is ignored.

Leading and trailing zeros are ignored.

If the string has a "0x" prefix, it is interpreted as a hexadecimal number.

If the string has a "0b" prefix, it is interpreted as a binary number.

For hexadecimal and binary numbers, the exponent must be separated from the
 significand
(mantissa) by the letter "p" or "P", not "e" or "E" as with decimal
 numbers.

One underline is allowed between any two digits, including hexadecimal and
 binary digits.

If the string can not be interpreted, NaN is returned.

Octal numbers are typically prefixed by "0", but since leading zeros are
 stripped, these methods can
not automatically recognize octal numbers, so use
 the constructor from_oct() to interpret octal strings.

Some examples of valid string input

 Input string Resulting value
 123 123
 1.23e2 123
 12300e-2 123
 0xcafe 51966
 0b1101 13
 67_538_754 67538754
 -4_5_6.7_8_9e+0_1_0 -4567890000000
 0x1.921fb5p+1 3.14159262180328369140625e+0
 0b1.1001p-4 9.765625e-2

Output
Output values are usually Math::BigFloat objects.

Boolean operators is_zero(), is_one(), is_inf(), etc. return true or
 false.

Perl version 5.26.1 documentation - Math::BigFloat

Page 5http://perldoc.perl.org

Comparison operators bcmp() and bacmp()) return -1, 0, 1, or
 undef.

METHODS
Math::BigFloat supports all methods that Math::BigInt supports, except it
 calculates non-integer
results when possible. Please see Math::BigInt for a
 full description of each method. Below are just
the most important differences:

Configuration methods
accuracy()

 $x->accuracy(5); # local for $x
 CLASS->accuracy(5); # global for all members of CLASS
 # Note: This also applies to new()!

 $A = $x->accuracy(); # read out accuracy that affects $x
 $A = CLASS->accuracy(); # read out global accuracy

Set or get the global or local accuracy, aka how many significant digits the
 results have. If you
set a global accuracy, then this also applies to new()!

Warning! The accuracy sticks, e.g. once you created a number under the
 influence of
CLASS->accuracy($A), all results from math operations with
 that number will also be
rounded.

In most cases, you should probably round the results explicitly using one of "round()" in
Math::BigInt, "bround()" in Math::BigInt or "bfround()" in Math::BigInt
 or by passing the desired
accuracy to the math operation as additional
 parameter:

 my $x = Math::BigInt->new(30000);
 my $y = Math::BigInt->new(7);
 print scalar $x->copy()->bdiv($y, 2); # print 4300
 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300

precision()

 $x->precision(-2); # local for $x, round at the second
 # digit right of the dot
 $x->precision(2); # ditto, round at the second digit
 # left of the dot

 CLASS->precision(5); # Global for all members of CLASS
 # This also applies to new()!
 CLASS->precision(-5); # ditto

 $P = CLASS->precision(); # read out global precision
 $P = $x->precision(); # read out precision that affects $x

Note: You probably want to use accuracy() instead. With accuracy() you
 set the number of
digits each result should have, with precision() you
 set the place where to round!

Constructor methods
from_hex()

 $x -> from_hex("0x1.921fb54442d18p+1");
 $x = Math::BigFloat -> from_hex("0x1.921fb54442d18p+1");

Interpret input as a hexadecimal string.A prefix ("0x", "x", ignoring case) is
 optional. A single
underscore character ("_") may be placed between any two
 digits. If the input is invalid, a NaN
is returned. The exponent is in base 2
 using decimal digits.

Perl version 5.26.1 documentation - Math::BigFloat

Page 6http://perldoc.perl.org

If called as an instance method, the value is assigned to the invocand.

from_oct()

 $x -> from_oct("1.3267p-4");
 $x = Math::BigFloat -> from_oct("1.3267p-4");

Interpret input as an octal string. A single underscore character ("_") may be
 placed between
any two digits. If the input is invalid, a NaN is returned. The
 exponent is in base 2 using
decimal digits.

If called as an instance method, the value is assigned to the invocand.

from_bin()

 $x -> from_bin("0b1.1001p-4");
 $x = Math::BigFloat -> from_bin("0b1.1001p-4");

Interpret input as a hexadecimal string. A prefix ("0b" or "b", ignoring case)
 is optional. A
single underscore character ("_") may be placed between any two
 digits. If the input is invalid,
a NaN is returned. The exponent is in base 2
 using decimal digits.

If called as an instance method, the value is assigned to the invocand.

bpi()

 print Math::BigFloat->bpi(100), "\n";

Calculate PI to N digits (including the 3 before the dot). The result is
 rounded according to the
current rounding mode, which defaults to "even".

This method was added in v1.87 of Math::BigInt (June 2007).

Arithmetic methods
bmuladd()

 $x->bmuladd($y,$z);

Multiply $x by $y, and then add $z to the result.

This method was added in v1.87 of Math::BigInt (June 2007).

bdiv()

 $q = $x->bdiv($y);
 ($q, $r) = $x->bdiv($y);

In scalar context, divides $x by $y and returns the result to the given or
 default
accuracy/precision. In list context, does floored division
 (F-division), returning an integer $q
and a remainder $r so that $x = $q * $y +
 $r. The remainer (modulo) is equal to what is
returned by $x-bmod($y)>.

bmod()

 $x->bmod($y);

Returns $x modulo $y. When $x is finite, and $y is finite and non-zero, the
 result is identical to
the remainder after floored division (F-division). If,
 in addition, both $x and $y are integers, the
result is identical to the result
 from Perl's % operator.

bexp()

 $x->bexp($accuracy); # calculate e ** X

Calculates the expression e ** $x where e is Euler's number.

Perl version 5.26.1 documentation - Math::BigFloat

Page 7http://perldoc.perl.org

This method was added in v1.82 of Math::BigInt (April 2007).

bnok()

 $x->bnok($y); # x over y (binomial coefficient n over k)

Calculates the binomial coefficient n over k, also called the "choose"
 function. The result is
equivalent to:

 (n) n!
 | - | = -------
 (k) k!(n-k)!

This method was added in v1.84 of Math::BigInt (April 2007).

bsin()

 my $x = Math::BigFloat->new(1);
 print $x->bsin(100), "\n";

Calculate the sinus of $x, modifying $x in place.

This method was added in v1.87 of Math::BigInt (June 2007).

bcos()

 my $x = Math::BigFloat->new(1);
 print $x->bcos(100), "\n";

Calculate the cosinus of $x, modifying $x in place.

This method was added in v1.87 of Math::BigInt (June 2007).

batan()

 my $x = Math::BigFloat->new(1);
 print $x->batan(100), "\n";

Calculate the arcus tanges of $x, modifying $x in place. See also batan2().

This method was added in v1.87 of Math::BigInt (June 2007).

batan2()

 my $y = Math::BigFloat->new(2);
 my $x = Math::BigFloat->new(3);
 print $y->batan2($x), "\n";

Calculate the arcus tanges of $y divided by $x, modifying $y in place.
 See also batan().

This method was added in v1.87 of Math::BigInt (June 2007).

as_float()

This method is called when Math::BigFloat encounters an object it doesn't know
 how to
handle. For instance, assume $x is a Math::BigFloat, or subclass
 thereof, and $y is defined,
but not a Math::BigFloat, or subclass thereof. If
 you do

 $x -> badd($y);

$y needs to be converted into an object that $x can deal with. This is done by
 first checking if
$y is something that $x might be upgraded to. If that is the
 case, no further attempts are
made. The next is to see if $y supports the
 method as_float(). The method as_float()
is expected to return either an
 object that has the same class as $x, a subclass thereof, or a
string that ref($x)->new() can parse to create an object.

In Math::BigFloat, as_float() has the same effect as copy().

Perl version 5.26.1 documentation - Math::BigFloat

Page 8http://perldoc.perl.org

ACCURACY AND PRECISION
See also: Rounding.

Math::BigFloat supports both precision (rounding to a certain place before or
 after the dot) and
accuracy (rounding to a certain number of digits). For a
 full documentation, examples and tips on
these topics please see the large
 section about rounding in Math::BigInt.

Since things like sqrt(2) or 1 / 3 must presented with a limited
 accuracy lest a operation
consumes all resources, each operation produces
 no more than the requested number of digits.

If there is no global precision or accuracy set, and the operation in
 question was not called with a
requested precision or accuracy, and the
 input $x has no accuracy or precision set, then a fallback
parameter will
 be used. For historical reasons, it is called div_scale and can be accessed
 via:

 $d = Math::BigFloat->div_scale(); # query
 Math::BigFloat->div_scale($n); # set to $n digits

The default value for div_scale is 40.

In case the result of one operation has more digits than specified,
 it is rounded. The rounding mode
taken is either the default mode, or the one
 supplied to the operation after the scale:

 $x = Math::BigFloat->new(2);
 Math::BigFloat->accuracy(5); # 5 digits max
 $y = $x->copy()->bdiv(3); # gives 0.66667
 $y = $x->copy()->bdiv(3,6); # gives 0.666667
 $y = $x->copy()->bdiv(3,6,undef,'odd'); # gives 0.666667
 Math::BigFloat->round_mode('zero');
 $y = $x->copy()->bdiv(3,6); # will also give 0.666667

Note that Math::BigFloat->accuracy() and Math::BigFloat->precision()
 set the global
variables, and thus any newly created number will be subject
 to the global rounding immediately.
This means that in the examples above, the 3 as argument to bdiv() will also get an accuracy of 5.

It is less confusing to either calculate the result fully, and afterwards
 round it explicitly, or use the
additional parameters to the math
 functions like so:

 use Math::BigFloat;
 $x = Math::BigFloat->new(2);
 $y = $x->copy()->bdiv(3);
 print $y->bround(5),"\n"; # gives 0.66667

 or

 use Math::BigFloat;
 $x = Math::BigFloat->new(2);
 $y = $x->copy()->bdiv(3,5); # gives 0.66667
 print "$y\n";

Rounding
bfround (+$scale)

Rounds to the $scale'th place left from the '.', counting from the dot.
 The first digit is numbered
1.

bfround (-$scale)

Rounds to the $scale'th place right from the '.', counting from the dot.

Perl version 5.26.1 documentation - Math::BigFloat

Page 9http://perldoc.perl.org

bfround (0)

Rounds to an integer.

bround (+$scale)

Preserves accuracy to $scale digits from the left (aka significant digits) and
 pads the rest with
zeros. If the number is between 1 and -1, the significant
 digits count from the first non-zero
after the '.'

bround (-$scale) and bround (0)

These are effectively no-ops.

All rounding functions take as a second parameter a rounding mode from one of
 the following: 'even',
'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'.

The default rounding mode is 'even'. By using Math::BigFloat->round_mode($round_mode);
you can get and set the default
 mode for subsequent rounding. The usage of
$Math::BigFloat::$round_mode is
 no longer supported.
 The second parameter to the round
functions then overrides the default
 temporarily.

The as_number() function returns a BigInt from a Math::BigFloat. It uses
 'trunc' as rounding mode to
make it equivalent to:

 $x = 2.5;
 $y = int($x) + 2;

You can override this by passing the desired rounding mode as parameter to as_number():

 $x = Math::BigFloat->new(2.5);
 $y = $x->as_number('odd'); # $y = 3

Autocreating constants
After use Math::BigFloat ':constant' all the floating point constants
 in the given scope are
converted to Math::BigFloat. This conversion
 happens at compile time.

In particular

 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'

prints the value of 2E-100. Note that without conversion of
 constants the expression 2E-100 will be
calculated as normal floating point
 number.

Please note that ':constant' does not affect integer constants, nor binary
 nor hexadecimal constants.
Use bignum or Math::BigInt to get this to
 work.

Math library
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

 use Math::BigFloat lib => 'Calc';

You can change this by using:

 use Math::BigFloat lib => 'GMP';

Note: General purpose packages should not be explicit about the library
 to use; let the script author
decide which is best.

Perl version 5.26.1 documentation - Math::BigFloat

Page 10http://perldoc.perl.org

Note: The keyword 'lib' will warn when the requested library could not be
 loaded. To suppress the
warning use 'try' instead:

 use Math::BigFloat try => 'GMP';

If your script works with huge numbers and Calc is too slow for them,
 you can also for the loading of
one of these libraries and if none
 of them can be used, the code will die:

 use Math::BigFloat only => 'GMP,Pari';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

 use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';

See the respective low-level library documentation for further details.

Please note that Math::BigFloat does not use the denoted library itself,
 but it merely passes the lib
argument to Math::BigInt. So, instead of the need
 to do:

 use Math::BigInt lib => 'GMP';
 use Math::BigFloat;

you can roll it all into one line:

 use Math::BigFloat lib => 'GMP';

It is also possible to just require Math::BigFloat:

 require Math::BigFloat;

This will load the necessary things (like BigInt) when they are needed, and
 automatically.

See Math::BigInt for more details than you ever wanted to know about using
 a different low-level
library.

Using Math::BigInt::Lite
For backwards compatibility reasons it is still possible to
 request a different storage class for use with
Math::BigFloat:

 use Math::BigFloat with => 'Math::BigInt::Lite';

However, this request is ignored, as the current code now uses the low-level
 math library for directly
storing the number parts.

EXPORTS
Math::BigFloat exports nothing by default, but can export the bpi() method:

 use Math::BigFloat qw/bpi/;

 print bpi(10), "\n";

CAVEATS
Do not try to be clever to insert some operations in between switching
 libraries:

 require Math::BigFloat;

Perl version 5.26.1 documentation - Math::BigFloat

Page 11http://perldoc.perl.org

 my $matter = Math::BigFloat->bone() + 4; # load BigInt and Calc
 Math::BigFloat->import(lib => 'Pari'); # load Pari, too
 my $anti_matter = Math::BigFloat->bone()+4; # now use Pari

This will create objects with numbers stored in two different backend libraries,
 and VERY BAD
THINGS will happen when you use these together:

 my $flash_and_bang = $matter + $anti_matter; # Don't do this!

stringify, bstr()

Both stringify and bstr() now drop the leading '+'. The old code would return
 '+1.23', the new
returns '1.23'. See the documentation in Math::BigInt for
 reasoning and details.

brsft()

The following will probably not print what you expect:

 my $c = Math::BigFloat->new('3.14159');
 print $c->brsft(3,10),"\n"; # prints 0.00314153.1415

It prints both quotient and remainder, since print calls brsft() in list
 context. Also,
$c->brsft() will modify $c, so be careful.
 You probably want to use

 print scalar $c->copy()->brsft(3,10),"\n";
 # or if you really want to modify $c
 print scalar $c->brsft(3,10),"\n";

instead.

Modifying and =

Beware of:

 $x = Math::BigFloat->new(5);
 $y = $x;

It will not do what you think, e.g. making a copy of $x. Instead it just makes
 a second
reference to the same object and stores it in $y. Thus anything
 that modifies $x will modify $y
(except overloaded math operators), and vice
 versa. See Math::BigInt for details and how to
avoid that.

precision() vs. accuracy()

A common pitfall is to use precision() when you want to round a result to
 a certain number of
digits:

 use Math::BigFloat;

 Math::BigFloat->precision(4); # does not do what you
 # think it does
 my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
 print "$x\n"; # print "12000"
 my $y = Math::BigFloat->new(3); # rounds $y to "0"!
 print "$y\n"; # print "0"
 $z = $x / $y; # 12000 / 0 => NaN!
 print "$z\n";
 print $z->precision(),"\n"; # 4

Replacing precision() with accuracy() is probably not what you want, either:

 use Math::BigFloat;

Perl version 5.26.1 documentation - Math::BigFloat

Page 12http://perldoc.perl.org

 Math::BigFloat->accuracy(4); # enables global rounding:
 my $x = Math::BigFloat->new(123456); # rounded immediately
 # to "12350"
 print "$x\n"; # print "123500"
 my $y = Math::BigFloat->new(3); # rounded to "3
 print "$y\n"; # print "3"
 print $z = $x->copy()->bdiv($y),"\n"; # 41170
 print $z->accuracy(),"\n"; # 4

What you want to use instead is:

 use Math::BigFloat;

 my $x = Math::BigFloat->new(123456); # no rounding
 print "$x\n"; # print "123456"
 my $y = Math::BigFloat->new(3); # no rounding
 print "$y\n"; # print "3"
 print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
 print $z->accuracy(),"\n"; # undef

In addition to computing what you expected, the last example also does not
 "taint" the result
with an accuracy or precision setting, which would
 influence any further operation.

BUGS
Please report any bugs or feature requests to bug-math-bigint at rt.cpan.org, or through
the web interface at https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt
 (requires login).
 We
will be notified, and then you'll automatically be notified of progress on
 your bug as I make changes.

SUPPORT
You can find documentation for this module with the perldoc command.

 perldoc Math::BigFloat

You can also look for information at:

* RT: CPAN's request tracker

https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt

* AnnoCPAN: Annotated CPAN documentation

http://annocpan.org/dist/Math-BigInt

* CPAN Ratings

http://cpanratings.perl.org/dist/Math-BigInt

* Search CPAN

http://search.cpan.org/dist/Math-BigInt/

* CPAN Testers Matrix

http://matrix.cpantesters.org/?dist=Math-BigInt

* The Bignum mailing list

* Post to mailing list

bignum at lists.scsys.co.uk

* View mailing list

http://lists.scsys.co.uk/pipermail/bignum/

Perl version 5.26.1 documentation - Math::BigFloat

Page 13http://perldoc.perl.org

* Subscribe/Unsubscribe

http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

SEE ALSO
Math::BigFloat and Math::BigInt as well as the backends Math::BigInt::FastCalc, Math::BigInt::GMP,
and Math::BigInt::Pari.

The pragmas bignum, bigint and bigrat also might be of interest
 because they solve the
autoupgrading/downgrading issue, at least partly.

AUTHORS
Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001.

Completely rewritten by Tels http://bloodgate.com in 2001-2008.

Florian Ragwitz <flora@cpan.org>, 2010.

Peter John Acklam <pjacklam@online.no>, 2011-.

