
Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 1http://perldoc.perl.org

NAME
ExtUtils::MakeMaker::FAQ - Frequently Asked Questions About MakeMaker

DESCRIPTION
FAQs, tricks and tips for ExtUtils::MakeMaker.

Module Installation
How do I install a module into my home directory?

If you're not the Perl administrator you probably don't have
 permission to install a module to its
default location. Ways of handling
 this with a lot less manual effort on your part are perlbrew

and local::lib.

Otherwise, you can install it for your own use into your home directory
 like so:

 # Non-unix folks, replace ~ with /path/to/your/home/dir
 perl Makefile.PL INSTALL_BASE=~

This will put modules into ~/lib/perl5, man pages into ~/man and
 programs into ~/bin.

To ensure your Perl programs can see these newly installed modules,
 set your PERL5LIB
environment variable to ~/lib/perl5 or tell
 each of your programs to look in that directory with
the following:

 use lib "$ENV{HOME}/lib/perl5";

or if $ENV{HOME} isn't set and you don't want to set it for some
 reason, do it the long way.

 use lib "/path/to/your/home/dir/lib/perl5";

How do I get MakeMaker and Module::Build to install to the same place?

Module::Build, as of 0.28, supports two ways to install to the same
 location as MakeMaker.

We highly recommend the install_base method, its the simplest and most
 closely
approximates the expected behavior of an installation prefix.

1) Use INSTALL_BASE / --install_base

MakeMaker (as of 6.31) and Module::Build (as of 0.28) both can install
 to the same locations
using the "install_base" concept. See "INSTALL_BASE" in ExtUtils::MakeMaker for details. To
get MM and MB to
 install to the same location simply set INSTALL_BASE in MM and
--install_base in MB to the same location.

 perl Makefile.PL INSTALL_BASE=/whatever
 perl Build.PL --install_base /whatever

This works most like other language's behavior when you specify a
 prefix. We recommend this
method.

2) Use PREFIX / --prefix

Module::Build 0.28 added support for --prefix which works like
 MakeMaker's PREFIX.

 perl Makefile.PL PREFIX=/whatever
 perl Build.PL --prefix /whatever

We highly discourage this method. It should only be used if you know
 what you're doing and
specifically need the PREFIX behavior. The
 PREFIX algorithm is complicated and focused on
matching the system
 installation.

How do I keep from installing man pages?

Recent versions of MakeMaker will only install man pages on Unix-like
 operating systems.

For an individual module:

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 2http://perldoc.perl.org

 perl Makefile.PL INSTALLMAN1DIR=none INSTALLMAN3DIR=none

If you want to suppress man page installation for all modules you have
 to reconfigure Perl and
tell it 'none' when it asks where to install
 man pages.

How do I use a module without installing it?

Two ways. One is to build the module normally...

 perl Makefile.PL
 make
 make test

...and then use blib to point Perl at the built but uninstalled module:

	 perl -Mblib script.pl
	 perl -Mblib -e '...'

The other is to install the module in a temporary location.

 perl Makefile.PL INSTALL_BASE=~/tmp
 make
 make test
 make install

And then set PERL5LIB to ~/tmp/lib/perl5. This works well when you
 have multiple modules to
work with. It also ensures that the module
 goes through its full installation process which may
modify it.
 Again, local::lib may assist you here.

How can I organize tests into subdirectories and have them run?

Let's take the following test directory structure:

 t/foo/sometest.t
 t/bar/othertest.t
 t/bar/baz/anothertest.t

Now, inside of the WriteMakeFile() function in your Makefile.PL, specify
 where your tests
are located with the test directive:

 test => {TESTS => 't/*.t t/*/*.t t/*/*/*.t'}

The first entry in the string will run all tests in the top-level t/ directory. The second will run all
test files located in any subdirectory under t/. The third, runs all test files within any
subdirectory within any other
 subdirectory located under t/.

Note that you do not have to use wildcards. You can specify explicitly which
 subdirectories to
run tests in:

 test => {TESTS => 't/*.t t/foo/*.t t/bar/baz/*.t'}

PREFIX vs INSTALL_BASE from Module::Build::Cookbook

The behavior of PREFIX is complicated and depends closely on how your
 Perl is configured.
The resulting installation locations will vary
 from machine to machine and even different
installations of Perl on the
 same machine. Because of this, its difficult to document where
prefix
 will place your modules.

In contrast, INSTALL_BASE has predictable, easy to explain installation
 locations. Now that
Module::Build and MakeMaker both have INSTALL_BASE
 there is little reason to use PREFIX
other than to preserve your existing
 installation locations. If you are starting a fresh Perl
installation we
 encourage you to use INSTALL_BASE. If you have an existing installation

installed via PREFIX, consider moving it to an installation structure
 matching INSTALL_BASE
and using that instead.

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 3http://perldoc.perl.org

Generating *.pm files with substitutions eg of $VERSION

If you want to configure your module files for local conditions, or to
 automatically insert a
version number, you can use EUMM's PL_FILES
 capability, where it will automatically run
each *.PL it finds to
 generate its basename. For instance:

 # Makefile.PL:
 require 'common.pl';
 my $version = get_version();
 my @pms = qw(Foo.pm);
 WriteMakefile(
 NAME => 'Foo',
 VERSION => $version,
 PM => { map { ($_ => "\$(INST_LIB)/$_") } @pms },
 clean => { FILES => join ' ', @pms },
);

 # common.pl:
 sub get_version { '0.04' }
 sub process { my $v = get_version(); s/__VERSION__/$v/g; }
 1;

 # Foo.pm.PL:
 require 'common.pl';
 $_ = join '', <DATA>;
 process();
 my $file = shift;
 open my $fh, '>', $file or die "$file: $!";
 print $fh $_;
 __DATA__
 package Foo;
 our $VERSION = '__VERSION__';
 1;

You may notice that PL_FILES is not specified above, since the default
 of mapping each .PL
file to its basename works well.

If the generated module were architecture-specific, you could replace $(INST_LIB) above
with $(INST_ARCHLIB), although if you locate
 modules under lib, that would involve
ensuring any lib/ in front
 of the module location were removed.

Common errors and problems
"No rule to make target `/usr/lib/perl5/CORE/config.h', needed by `Makefile'"

Just what it says, you're missing that file. MakeMaker uses it to
 determine if perl has been
rebuilt since the Makefile was made. It's
 a bit of a bug that it halts installation.

Some operating systems don't ship the CORE directory with their base
 perl install. To solve
the problem, you likely need to install a perl
 development package such as perl-devel
(CentOS, Fedora and other
 Redhat systems) or perl (Ubuntu and other Debian systems).

Philosophy and History
Why not just use <insert other build config tool here>?

Why did MakeMaker reinvent the build configuration wheel? Why not
 just use autoconf or
automake or ppm or Ant or ...

There are many reasons, but the major one is cross-platform
 compatibility.

Perl is one of the most ported pieces of software ever. It works on
 operating systems I've
never even heard of (see perlport for details).
 It needs a build tool that can work on all those

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 4http://perldoc.perl.org

platforms and with
 any wacky C compilers and linkers they might have.

No such build tool exists. Even make itself has wildly different
 dialects. So we have to build
our own.

What is Module::Build and how does it relate to MakeMaker?

Module::Build is a project by Ken Williams to supplant MakeMaker.
 Its primary advantages
are:

* pure perl. no make, no shell commands

* easier to customize

* cleaner internals

* less cruft

Module::Build was long the official heir apparent to MakeMaker. The
 rate of both its
development and adoption has slowed in recent years,
 though, and it is unclear what the
future holds for it. That said,
 Module::Build set the stage for something to become the heir to

MakeMaker. MakeMaker's maintainers have long said that it is a dead
 end and should be kept
functioning, while being cautious about extending
 with new features.

Module Writing
How do I keep my $VERSION up to date without resetting it manually?

Often you want to manually set the $VERSION in the main module
 distribution because this is
the version that everybody sees on CPAN
 and maybe you want to customize it a bit. But for all
the other
 modules in your dist, $VERSION is really just bookkeeping and all that's
 important is
it goes up every time the module is changed. Doing this
 by hand is a pain and you often
forget.

Probably the easiest way to do this is using perl-reversion in Perl::Version:

 perl-reversion -bump

If your version control system supports revision numbers (git doesn't
 easily), the simplest way
to do it automatically is to use its revision
 number (you are using version control, right?).

In CVS, RCS and SVN you use $Revision$ (see the documentation of your
 version control
system for details). Every time the file is checked
 in the $Revision$ will be updated, updating
your $VERSION.

SVN uses a simple integer for $Revision$ so you can adapt it for your
 $VERSION like so:

 ($VERSION) = q$Revision$ =~ /(\d+)/;

In CVS and RCS version 1.9 is followed by 1.10. Since CPAN compares
 version numbers
numerically we use a sprintf() to convert 1.9 to 1.009
 and 1.10 to 1.010 which compare
properly.

 $VERSION = sprintf "%d.%03d", q$Revision$ =~ /(\d+)\.(\d+)/g;

If branches are involved (ie. $Revision: 1.5.3.4$) it's a little more
 complicated.

 # must be all on one line or MakeMaker will get confused.
 $VERSION = do { my @r = (q$Revision$ =~ /\d+/g); sprintf
"%d."."%03d" x $#r, @r };

In SVN, $Revision$ should be the same for every file in the project so
 they would all have the
same $VERSION. CVS and RCS have a different
 $Revision$ per file so each file will have a
different $VERSION.
 Distributed version control systems, such as SVK, may have a different

$Revision$ based on who checks out the file, leading to a different $VERSION
 on each
machine! Finally, some distributed version control systems, such
 as darcs, have no concept of
revision number at all.

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 5http://perldoc.perl.org

What's this META.yml thing and how did it get in my MANIFEST?!

META.yml is a module meta-data file pioneered by Module::Build and
 automatically generated
as part of the 'distdir' target (and thus
 'dist'). See "Module Meta-Data" in ExtUtils::MakeMaker.

To shut off its generation, pass the NO_META flag to WriteMakefile().

How do I delete everything not in my MANIFEST?

Some folks are surprised that make distclean does not delete
 everything not listed in their
MANIFEST (thus making a clean
 distribution) but only tells them what they need to delete.
This is
 done because it is considered too dangerous. While developing your
 module you might
write a new file, not add it to the MANIFEST, then
 run a distclean and be sad because your
new work was deleted.

If you really want to do this, you can use ExtUtils::Manifest::manifind() to read the
MANIFEST and File::Find
 to delete the files. But you have to be careful. Here's a script to
 do
that. Use at your own risk. Have fun blowing holes in your foot.

 #!/usr/bin/perl -w

 use strict;

 use File::Spec;
 use File::Find;
 use ExtUtils::Manifest qw(maniread);

 my %manifest = map {($_ => 1)}
 grep { File::Spec->canonpath($_) }
 keys %{ maniread() };

 if(!keys %manifest) {
 print "No files found in MANIFEST. Stopping.\n";
 exit;
 }

 find({
 wanted => sub {
 my $path = File::Spec->canonpath($_);

 return unless -f $path;
 return if exists $manifest{ $path };

 print "unlink $path\n";
 unlink $path;
 },
 no_chdir => 1
 },
 "."
);

Which tar should I use on Windows?

We recommend ptar from Archive::Tar not older than 1.66 with '-C' option.

Which zip should I use on Windows for '[ndg]make zipdist'?

We recommend InfoZIP: http://www.info-zip.org/Zip.html

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 6http://perldoc.perl.org

XS
How do I prevent "object version X.XX does not match bootstrap parameter Y.YY" errors?

XS code is very sensitive to the module version number and will
 complain if the version number in
your Perl module doesn't match. If
 you change your module's version # without rerunning Makefile.PL
the old
 version number will remain in the Makefile, causing the XS code to be built
 with the wrong
number.

To avoid this, you can force the Makefile to be rebuilt whenever you
 change the module containing
the version number by adding this to your
 WriteMakefile() arguments.

 depend => { '$(FIRST_MAKEFILE)' => '$(VERSION_FROM)' }

How do I make two or more XS files coexist in the same directory?

Sometimes you need to have two and more XS files in the same package.
 There are three ways:
XSMULTI, separate directories, and bootstrapping
 one XS from another.

XSMULTI

Structure your modules so they are all located under lib, such that Foo::Bar is in lib/Foo/Bar.pm and
lib/Foo/Bar.xs, etc. Have your
 top-level WriteMakefile set the variable XSMULTI to a true value.

Er, that's it.

Separate directories

Put each XS files into separate directories, each with their own Makefile.PL. Make sure each of those
Makefile.PLs has the correct CFLAGS, INC, LIBS etc. You will need to make sure the top-level
Makefile.PL refers to each of these using DIR.

Bootstrapping

Let's assume that we have a package Cool::Foo, which includes Cool::Foo and Cool::Bar
modules each having a separate XS
 file. First we use the following Makefile.PL:

 use ExtUtils::MakeMaker;

 WriteMakefile(
 NAME		 => 'Cool::Foo',
 VERSION_FROM	 => 'Foo.pm',
 OBJECT => q/$(O_FILES)/,
 # ... other attrs ...
);

Notice the OBJECT attribute. MakeMaker generates the following
 variables in Makefile:

 # Handy lists of source code files:
 XS_FILES= Bar.xs \
 	 Foo.xs
 C_FILES = Bar.c \
 	 Foo.c
 O_FILES = Bar.o \
 	 Foo.o

Therefore we can use the O_FILES variable to tell MakeMaker to use
 these objects into the shared
library.

That's pretty much it. Now write Foo.pm and Foo.xs, Bar.pm
 and Bar.xs, where Foo.pm bootstraps
the shared library and Bar.pm simply loading Foo.pm.

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 7http://perldoc.perl.org

The only issue left is to how to bootstrap Bar.xs. This is done
 from Foo.xs:

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

If you have more than two files, this is the place where you should
 boot extra XS files from.

The following four files sum up all the details discussed so far.

 Foo.pm:

 package Cool::Foo;

 require DynaLoader;

 our @ISA = qw(DynaLoader);
 our $VERSION = '0.01';
 bootstrap Cool::Foo $VERSION;

 1;

 Bar.pm:

 package Cool::Bar;

 use Cool::Foo; # bootstraps Bar.xs

 1;

 Foo.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

 MODULE = Cool::Foo PACKAGE = Cool::Foo PREFIX = cool_foo_

 void
 cool_foo_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Foo says: Perl Rules\n");

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 8http://perldoc.perl.org

 Bar.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Bar PACKAGE = Cool::Bar PREFIX = cool_bar_

 void
 cool_bar_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Bar says: Perl Rules\n");

And of course a very basic test:

 t/cool.t:

 use Test;
 BEGIN { plan tests => 1 };
 use Cool::Foo;
 use Cool::Bar;
 Cool::Foo::perl_rules();
 Cool::Bar::perl_rules();
 ok 1;

This tip has been brought to you by Nick Ing-Simmons and Stas Bekman.

An alternative way to achieve this can be seen in Gtk2::CodeGen
 and Glib::CodeGen.

DESIGN
MakeMaker object hierarchy (simplified)

What most people need to know (superclasses on top.)

 ExtUtils::MM_Any
 |
 ExtUtils::MM_Unix
 |
 ExtUtils::MM_{Current OS}
 |
 ExtUtils::MakeMaker
 |
 MY

The object actually used is of the class MY which allows you to
 override bits of MakeMaker inside
your Makefile.PL by declaring
 MY::foo() methods.

MakeMaker object hierarchy (real)
Here's how it really works:

 ExtUtils::MM_Any
 |
 ExtUtils::MM_Unix
 |
 ExtUtils::Liblist::Kid ExtUtils::MM_{Current OS} (if
necessary)

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 9http://perldoc.perl.org

 | |
 ExtUtils::Liblist ExtUtils::MakeMaker |
 | | |
 | | |-----------------------
 ExtUtils::MM
 | |
 ExtUtils::MY MM (created by ExtUtils::MM)
 | |
 MY (created by ExtUtils::MY) |
 . |
 (mixin) |
 . |
 PACK### (created each call to ExtUtils::MakeMaker->new)

NOTE: Yes, this is a mess. See http://archive.develooper.com/makemaker@perl.org/msg00134.html

for some history.

NOTE: When ExtUtils::MM is loaded it chooses a superclass for MM from
 amongst the ExtUtils::MM_*
modules based on the current operating
 system.

NOTE: ExtUtils::MM_{Current OS} represents one of the ExtUtils::MM_*
 modules except
ExtUtils::MM_Any chosen based on your operating system.

NOTE: The main object used by MakeMaker is a PACK### object, *not*
 ExtUtils::MakeMaker. It is,
effectively, a subclass of MY,
 ExtUtils::Makemaker, ExtUtils::Liblist and ExtUtils::MM_{Current OS}

NOTE: The methods in MY are simply copied into PACK### rather than
 MY being a superclass of
PACK###. I don't remember the rationale.

NOTE: ExtUtils::Liblist should be removed from the inheritence hiearchy
 and simply be called as
functions.

NOTE: Modules like File::Spec and Exporter have been omitted for clarity.

The MM_* hierarchy
 MM_Win95 MM_NW5
 \ /
 MM_BeOS MM_Cygwin MM_OS2 MM_VMS MM_Win32 MM_DOS MM_UWIN
 \ | | | / / /
 --
 | |
 MM_Unix |
 | |
 MM_Any

NOTE: Each direct MM_Unix subclass is also an MM_Any subclass. This
 is a temporary hack
because MM_Unix overrides some MM_Any methods with
 Unix specific code. It allows the non-Unix
modules to see the
 original MM_Any implementations.

NOTE: Modules like File::Spec and Exporter have been omitted for clarity.

PATCHING
If you have a question you'd like to see added to the FAQ (whether or
 not you have the answer)
please either:

* make a pull request on the MakeMaker github repository

* raise a issue on the MakeMaker github repository

* file an RT ticket

* email makemaker@perl.org

Perl version 5.26.1 documentation - ExtUtils::MakeMaker::FAQ

Page 10http://perldoc.perl.org

AUTHOR
The denizens of makemaker@perl.org.

SEE ALSO
ExtUtils::MakeMaker

